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Abstract

The acoustic and auditory properties of individual musical instruments have been ex-
tensively studied over recent decades, however, their sonic interplay within a musical
ensemble remains under-explored. Given their considerable importance across vari-
ous fields, aspects of ensemble sound, such as blending of instruments, perceptual rel-
evance of directivity of instruments, and the role of room acoustics, demand compre-
hensive evaluations and an interdisciplinary approach. This study aims to improve the
perceptually motivated acoustic representation of instruments in joint performance in
both real and virtual acoustic domains, by exploring different stages of these aspects
in musically realistic contexts.

An explorative listening test with live string ensemble performance suggested that
the characteristics of the acoustic environment considerably influence the blending of
violins playing in unison. Combining methods of Machine Learning and Music Infor-
mation Retrieval, a computational modelling approach is proposed to classify sound
samples from an ensemble recording according to perceived blending. Proving this
classification to be effective for monophonically rendered sound samples of two vi-
olins from in-situ environments, without requiring the individual source recordings
marks a first step towards comprehensive blending modelling. Furthermore, the appli-
cability of close-microphone recordings for auralization of a perceptually convincing
ensemble sound was successfully demonstrated.

Advancing previous research in directivity perception, it could be demonstrated
that the room acoustics have a greater impact on the orientation perception of sources
than their directivity. By involving instruments with distinct radiation directivities in
a variety of acoustic environments, the major acoustical parameters influencing the
orientation perception have been explored. Examining musical instruments with their
inherent dynamic directivity against loudspeakers in in-situ conditions showed that
their distinction becomes obscured under specific acoustic conditions. These findings
led to a pilot study on the perceptual relevance of high-order directivity modelling of
individual sources forming an ensemble. Results indicate, that even with an increasing
number of sources, their detailed directivity characteristics remain pivotal for auraliz-
ing ensemble performance.

The role of room acoustics in shaping the overall blending is shown to be dependent
on the source-level blending. A computational model for predicting overall perceived
blending in musical performance using source-level blending ratings and room acous-
tical parameters was suggested and validated. Analysis of its feature importance re-
vealed that the room acoustic contribution to the overall blending impression is nearly



as significant as the blending between instruments at the source level. By emphasizing
and detailing relations between musical blending, directivity perception, and auraliza-
tion aspects, this thesis contributes to the advancement of ensemble sound research
and offers insights pertinent to music performance and perception research, virtual
acoustics, and related fields.

Keywords: Musical ensembles, Instrument blending, Sound source Directivity, Room
acoustics, Auralization.



Zusammenfassung
Die akustischen und auditiven Eigenschaften einzelner Musikinstrumente wur-

den in den letzten Jahrzehnten ausführlich untersucht - ihr klangliches Zusammen-
spiel in einem Ensemble ist jedoch vergleichsweise wenig erforscht. Aspekte des En-
sembleklangs wie die Klangverschmelzung, der Beitrag der Abstrahlcharakteristik für
die Klangformung und der Einfluss der Raumakustik sind für verschiedene Fachge-
biete von Bedeutung und erfordern daher eine ganzheitliche Betrachtung und einen
interdisziplinären Ansatz. Ziel dieser Arbeit ist es daher, die perzeptiv relevanten
akustischen Darstellungen gemeinsam klingender Instrumente für sowohl reale als
auch virtuelle akustische Umgebungen zu verbessern. Dazu werden verschiedene Ab-
stufungen dieser Aspekte in musikalisch realistischen Kontexten untersucht.

Ein explorativer Hörtest anhand von live Einspielungen eines Streicherensem-
bles ergab, dass die raumakustischen Eigenschaften die Klangverschmelzung unisono
spielender Violinen erheblich beeinflussen. Durch die Kombination von Methoden
des maschinellen Lernens und des Music Information Retrieval wird ein Model-
lierungsansatz vorgestellt der es erlaubt, Klangbeispiele aus einer Ensembleaufnahme
nach dem Grad der wahrgenommenen Klangverschmelzung zu klassifizieren. Diese
Klassifikationsmethode kommt dabei ohne nahmikrofonierte, quellgetrennte Signale
aus und wurde vielmehr anhand von monophonen Raumklangaufnahmen von zwei
Violinen unter realen Aufführungsbedingungen validiert. Diese Methodik stellt einen
erfolgversprechenden ersten Schritt hin zu einer ganzheitlichen Modellierung von
Klangverschmelzung dar. Darüber hinaus wird gezeigt, dass Nahmikrofonaufnahmen
geeignet sind um einen perzeptiv überzeugenden Ensembleklang zu auralisieren.

In Weiterentwicklung früherer Forschungen zur Richtwirkungswahrnehmung
konnte gezeigt werden, dass die Raumakustik einen größeren Einfluss auf die
Wahrnehmung der Orientierung einer Quelle hat als deren Richtwirkung. Anhand
von Instrumenten mit unterschiedlichen Hauptabstrahlrichtungen in verschiedenen
akustischen Umgebungen wurden die akustischen Parameter identifiziert welche
die Orientierungswahrnehmung hauptsächlich bedingen. Für Musikinstrumente
als Quellen mit inhärent dynamischer Richtwirkung zeigte sich im in-situ Ver-
gleich zu Lautsprechern, dass bestimmte raumakustische Bedingungen die Unter-
scheidbarkeit erschweren. Diese Erkenntnis inspirierte eine Pilotstudie zur Detail-
treue der Richtcharakteristikmodellierung von Quellen innerhalb eines Ensembles in
Bezug auf die Wahrnehmung des Gesamtklangs. Diese zeigt, dass selbst bei einer
zunehmendenAnzahl vonQuellen deren spezifische Richtcharakteristik weiterhin von
entscheidender Bedeutung für die Auralisierung von Ensembledarbietungen ist. Die
Rolle der Raumakustik bei der Gestaltung von Ensembleklang hängt dabei von der
Klangverschmelzung auf Quellenebene ab. Ein Modell zur Vorhersage der insgesamt
wahrgenommenen Verschmelzung einerMusikdarbietungwird vorgeschlagen und va-
lidiert, das auf akustischen Parametern basiert und mit subjektiven Einschätzungen



der Klangverschmelzung auf Quellenebene trainiert wird. Eine Merkmalsanalyse er-
gab dabei, dass die Raumakustik fast genauso wichtig ist für den Gesamteindruck
von Ensembleklang wie die Klangverschmelzung der einzelnen Instrumente auf Quel-
lenebene.

Durch die Herausarbeitung und Verdeutlichung der Zusammenhänge zwischen
musikalischer Verschmelzung, Richtwirkungswahrnehmung und Auralisation trägt
diese Arbeit zur Weiterentwicklung der Ensembleklangforschung bei und bietet
Erkenntnisse, die für die Musikaufführungs- und Musikwahrnehmungsforschung, die
virtuelle Akustik und verwandte Bereiche relevant sind.

Schlüsselwörter: Musikensembles, Instrumentenmischung, Richtwirkung der Schal-
lquelle, Raumakustik, Auralisierung.
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Chapter 1

Introduction

1.1 Motivation

Ensemble sound epitomizes the harmonious convergence of a group of voices or musi-
cal instruments that emerge from interconnectedness and collective expressions, tran-
scending boundaries and resonating deeply within the human experience. As articu-
lated by Daniel Barenboim, the musical ensemble functions as a dynamic organism,
reliant on symbiotic collaboration, effective communication, and creative synergy. At-
tributes such as orchestration techniques, timbral characteristics of individual instru-
ments, joint performance strategies, spatial arrangement of sources, room acoustics,
andmore, interact in complex ways to shape the formation and perception of ensemble
sound, highlighting the intricate relationship involved between music, acoustics, and
human perception. Ranging from the percussion ensemble, Ilanjithara Melam from
Kerala, India to the Vienna Philharmonic orchestra, these characteristics of the ensem-
ble sound exhibit cross-cultural consistency regardless of their size or genre. Although
significant research has been carried out on the acoustic and perceptual attributes of
individual musical instruments, the impact of these attributes in musical ensembles
remains mostly under-explored. This gap is primarily due to the multitude of fac-
tors influencing the formation of ensemble sound, necessitating an interdisciplinary
approach.

During a live musical ensemble performance, the listeners typically do not hear in-
dividual instruments as it is, but an immersive perceptual fusion ofmusical instruments
that blend together to result in an ‘auditory chimera’, a sound with rich musical tim-
bre, which is mostly different from the timbre of the constituent instruments. Rather
than perceiving each instrument distinctly, achieving a unified and harmonious per-
ception of instruments is a fundamental sonic objective in joint musical performances.

1



Chapter 1. Introduction

Therefore, auditory blending, a psychoacoustic phenomenon referring to the percep-
tual fusion of sound sources, stands as an integral perceptual attribute of joint musical
performances and ensemble sound. The blending of musical instruments shaped by
the collective effort of musicians, and the impact of room acoustics on it, are critical
aspects in both music performance and perception domains. Yet, these aspects remain
largely unexplored in realistic conditions, mainly due to the complex, multi-level, and
multi-dimensional characteristics involved in blending.

The directivity characteristics of musical instruments, which shape the spatial dis-
tribution of energy radiated from the instrument, constitute another perceptually rel-
evant acoustic attribute of the sound sources within a musical ensemble. Based on the
spatial distribution of the constituent instruments including their position and orienta-
tion, the directivity of sound sources is observed to alter the perceived ensemble sound
in spectral, temporal, and spatial domains. Attributes associated with directivity, such
as source orientation, are pivotal in the arrangement of instruments in music perfor-
mance, and instrument recording techniques. Moreover, modeling the directivity of
sound sources with high spectral and spatial resolution holds significance in accurate
room acoustic simulations and sound field reconstruction applications. While the di-
rectivity characteristics of individual instruments have been extensively investigated
over the past decades, their perceptual significance in room acoustic environments
has been relatively underexplored. This aspect becomes even more significant when it
comes to musical ensembles consisting of multiple sources.

The Virtual orchestra is considered to be the next-generation tool of orchestration
that opens up a wide range of possibilities such as customizable immersive listening
experiences for entertainment purposes, experimentations on composition and orches-
tration, educational applications, facilitation of interactive collaborations and perfor-
mances, and much more. Reconstructing a perceptually convincing spatial sound field
impression of an orchestra or ensemble involves various aspects, including capturing
source signals from each constituent instrument, modeling the directivity of sound
sources, simulation of room acoustic environment, and sound field reproduction, etc.
To ensure a musically and perceptually authentic acoustic representation of sound
sources in a virtual orchestra, the initial step is to capture authentic source signals
that retain the intrinsic and natural attributes of joint performance. Moreover, the as-
sessment of the perceptual requirement of the ‘detailings’ in directivity modeling of
individual sound sources in room acoustic environments is highly relevant for a per-
ceptually plausible creation of ensemble sound by minimizing computational efforts.
Furthermore, the assessment of blending between sound sources should be incorpo-
rated as an essential quality attribute of the virtual ensemble sound.

This thesis aims to investigate the perceptually relevant acoustic attributes of sound
sources in joint performancewithin amusically realistic setting. This includes the eval-
uation of blending between instruments, perceptual relevance of directivity of instru-
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1.2. Background

ments, and capturing individual instruments during joint musical performance from
in-situ conditions. Moreover, it also seeks to explore the role of room acoustic at-
tributes in these aspects. By delving into these aspects, this thesis attempts to advance
the acoustic and perceptual aspects of joint music performance research, and thereby
contributing to various fields including virtual reality acoustics, music performance
and perception research, music recording techniques, and beyond.

1.2 Background

1.2.1 Ensemble sound formation: an overview

When musicians perform together in a joint musical performance, the sound radiated
from the instrument reaches the listeners as direct sound as well as room acoustic
reflections. Such joint performances by the musicians are significantly influenced by
multimodal attributes including aural, visual, and tactile feedback, and thereby shape
the apparent ensemble sound generated. Figure 1.1 illustrates a flow diagram depicting
the major aspects and multimodal attributes involved in a joint musical performance.

Figure 1.1: Flow diagram of major aspects andmultimodal attributes involved in a joint
musical performance.

3



Chapter 1. Introduction

The first important aspect in the ensemble sound performance involves the dis-
tribution, i.e., the position and orientation, of musical instruments. The quality of
the ensemble performance is substantially impacted by performance-related attributes
such as the spacing and orientation of the sources and the corresponding self-to-others
ratio of auditory feedback [1; 2]. This is accompanied by cross-performer interaction
using visual feedback as well as auditory feedback [3; 4], and joint action strategies
such as leader-follower roles among the players [5]. The presence of a conductor can
be an important aspect in this stage. By optimizing these performance-related fac-
tors and interactions, performers try to attain temporal synchronicity and pitch sim-
ilarity in producing sound and also modify the instrument timbre while performing
[2; 3; 4; 5; 6]. Once the sound is produced, it radiates from the instrument according
to the directivity characteristics of the instruments and reaches both the listener and
the performer as direct sound. Subsequently, a multitude of room acoustic reflections,
that encompass strong early reflections and late reverberations, reaches the listeners
and performers. These room acoustic reflections are observed to shape the spectral and
spatial attributes of the perceived instrument sound; the reflections act as a filter in the
frequency domain due to the absorption properties of the walls, moreover, the spatial
impression including the perceived source width and spatial envelopment are altered
according to the strength and directionality of the room acoustic reflections. These
perceptually important attributes of room acoustics have been extensively analyzed
in the past decades, particularly in the context of musical performance perception, by
utilizing a wide range of acoustic parameters and verbal descriptors [7; 8; 9]. Addition-
ally, these modified room acoustic reflections, serving as room acoustics feedback, are
another major factor that has been shown to influence the timbre, tempo, dynamics, vi-
brato, etc., of the performance, and thereby actively control the performance strategies
[10; 11; 12; 13].

Achieving an immersive perceptual fusion of musical instruments, and thereby
yielding a blended auditory impression, is often the primary objective in ensemble
sound. Therefore, the auditory blending of sound sources, defined as the perceptual
fusion of two or more concurrent sounds where the constituent sound sources are no
longer individually distinguishable [6; 14], is an integral aspect of the ensemble sound.
Although themultimodal attributes and their complex interactions are important in the
joint musical performance, by including the four stages of musical blending evolution,
the formation and development of a ‘blended ensemble sound’ can be summarized in
a simplified way as provided in Figure 1.2.

The process starts with the composer’s formulation of the arrangement and orches-
tration of the musical composition. The composer’s conception of the desired level of
musical blending by choosing suitable instruments and musical elements including
pitch range, dynamics, tempo, and articulation is involved in this stage. The seating
arrangement of musical instruments in the performance space can be pre-decided by
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1.2. Background

the composer or conductor to meet specific musical or acoustical needs (as discussed
in [15]), or by following conventional practices (e.g. American and German seating
arrangement in orchestra). The understanding of the composer’s intention by the con-
ductor, subsequently by the musician, and its execution as a joint performance is the
second stage. The blending development at this stage is referred to as ‘source-level
blending’, where joint performance strategies and room acoustic feedback play a sig-
nificant role. The next part involves the directivity-related attributes of musical instru-
ments; depending on how the instruments are positioned and oriented on stage, the
directivity characteristics of the instruments decide the spatial distribution of sound
energy radiated from the ensemble, leading to changes in the perceived sound of the
ensemble performance [16]. Transformation of the ensemble sound by room acous-
tic environment is the next part in the ensemble sound evolution, where the room
acoustic reflections modify the perceived timbre, clarity, and spatial impression of the
ensemble sound. As a result, the degree of musical blending impression also gets al-
tered by the room acoustic reflections, at this stage. The final stage of ensemble sound
formation encompasses the perception and interpretation of ensemble sound by the
listeners. The realization of the blending occurs at this stage which varies based on
the skills and background of the listener [17; 18].

Figure 1.2: Schematic diagram of the formation and evolution of a blended ensemble
sound

The formation of an ensemble sound in the virtual acoustic domain is fundamen-
tally carried out through a process called ‘Auralization’. Analogous to ‘visualization’, it
is the process of (re)creating audible sound files of an acoustic scene, enabling people to
listen to acoustics of a particular real/virtual space, by utilizing measured or simulated
or synthesized data. Auralization involves several steps including sound generation
and capture, modeling sound source, simulation of room acoustic environments, and
sound field reproduction. In addition to its applications in Virtual Reality (VR) and
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Chapter 1. Introduction

Extended Reality (XR) [19], the auralization technique has been widely used in room
acoustic planning [20], environmental soundscape evaluation [21], architectural and
archaeological acoustics [22; 23], and so on. An intrinsic and plausible representation
of sound sources in the auralization of an ensemble performance involves two major
steps: capturing the sound signals of constituent sources in an ensemble and modeling
the directivities of the sources in simulations. Considering the significance of both vi-
sual and auditory feedback from musicians and from the room acoustics as discussed
above, it is important to capture the source signals of individual instruments in the
ensemble by preserving the musically intrinsic and perceptually authentic qualities of
their joint performance. Moreover, by accounting for the influence of room acoustic
reflections, estimating the perceptual relevance of complex and inherent directivity
patterns of instruments in realistic room acoustic environments could contribute to
optimizing the directivity filters of sound sources in auralization for a perceptually
plausible rendering of an ensemble sound.

The details on the different stages and aspects of musical blending, directivity per-
ception, and auralization are described in the following sections.

1.2.2 Blending of sound sources

Attaining a harmonious blend of sound sources is a fundamental sonic objective in
collaborative musical performances. Therefore, the phenomenon of auditory blending
between sound sources is established as a crucial aspect in music perception-related
domains, spanning music composition and orchestration[6; 24], techniques for orches-
trating recordings[25; 26], room acoustic adaptations [27; 28], development of joint
performance strategies [5], and the evaluation of orchestral soundscapes in both real-
world and virtual reality settings. The auditory blending phenomenon is fundamen-
tally linked to the principles of fusion and segregation of concurrent auditory stream
perception described in Auditory Scene Analysis (ASA) [29] (detailed in the following
section). The degree of the perceived blending between sound sources can be assessed
in two ways: either by using a rating scale to judge the blending impression or by
evaluating the identifiability of constituent sound sources in the concurrent sound
[6; 14; 24]. The four important stages involved in the evolution of blending and the
major attributes involved in each stage are detailed below.

Blending as composer’s notion:

Blend and contrast are two major musical aspects composers use skillfully to achieve
different sonic goals required in musical compositions and thereby enhance the musi-
cal experience. Therefore the evolution of blending commences with the composer’s
conceptualization of the desired blending in a musical piece. Composers utilize the
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concept of blending between instruments to obtain certain timbral outcomes by pro-
ducing an augmented, emergent, or softened timbre from individual timbres of in-
volved instruments [15]. Additionally, they use blending to attain specific sonic goals,
such as enhancing expressiveness for emotional depth, ensuring balance between in-
struments, achieving coherence, and so on. It is achieved through careful decisions
regarding the selection of musical instruments, and choices of the composition ele-
ments such as pitch range, dynamics, tempo, articulation, etc.

Musical blending is observed to be higher in unison performances, where two or
more players perform in the same pitch or octaves, compared to non-unison arrange-
ments [14; 24; 30]. The timbre characteristics of the instruments chosen for joint per-
formance significantly influence the blending. Compositions involving lower pitch
registers result in relatively darker timbral characteristics of the instruments, thereby
improving the blending impression [14]. Moreover, the dynamics marking of the mu-
sical piece, representing the variation in loudness between the musical notes, also ap-
pears to influence the blending impression, where softer dynamics leading to a darker
timbre are observed to enhance blending [15]. Furthermore, musical articulation-
related aspects such as the excitation of the instrument by bowing or plucking the
string, and the presence of temporal or spectral modulations such as vibrato are also
observed to influence the blending [14; 30; 31]. The symbolic information of musical
attributes extracted from musical scores, such as the onset synchronicity, pitch har-
monicity, and parallelism in pitch and dynamics, are shown to provide cues on mod-
eling the orchestral blend from musical scores [32]. While the selection of attributes
influencing blending is important, the key part to achieving the intended blending lies
in the musicians’ flawless execution of the composer’s vision. This crucial aspect of
blending occurs during the joint performance stage, leading to the formation of blend-
ing at the source level.

Blending at source level

Source-level blending between instruments in a joint performance is a multifaceted
process influenced by both composition-related attributes and musical performance-
related parameters, which span spectral, temporal, and loudness domains. While musi-
cians try to attain the composer’s or conductor’s vision of blending, their performance
strategies are controlled by inter-musician coordination and room acoustic feedback.
In such conditions, musicians trying to achieve a blended output will try to optimize
attributes such as the timbre of individual instruments, temporal synchronicity, pitch
similarity, coherence in dynamics, and so on [2; 3; 4; 5; 6]. These mentioned musically
oriented attributes that influence the source level blending can be evaluated by ana-
lyzing corresponding acoustic parameters extracted from audio signals across spectral,
temporal, and loudness domains.
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The perception of blending between two sound sources can be assessed using acous-
tic parameters representing their spectral characteristics such as the composite spectral
centroid, spectral envelope, the prominence and frequency relationship of formants,
etc. A lower spectral centroid value, representing a darker timbre of the instrument
sounds, correlates with an improvement in blending impression [14; 31]. Moreover,
similarity in spectral envelope characteristics, coinciding formant locations, etc., also
contribute to the improvement of blending impression [6; 24; 14; 33]. Since the differ-
ence in fundamental frequencies is observed to influence auditory stream segregation
of concurrent sounds [34; 35], increasing pitch separation between the instruments
in joint performance results in reduced blending [15]. When it comes to temporal
domain, the onset synchronization of musical notes are very important to achieve a
blended impression [14]. The attack time of onsets, influenced by musical articula-
tion such as bowed or plucked excitation, also plays a significant role in blending. A
slower attack is observed to result in better blending compared to an impulsive attack
[31; 30]. Additionally, a high correlation in loudness between the concurrent sounds
from instruments was also observed to influence the blending positively [14].

Attempts to statistically predict the source-level blending impression between dif-
ferent instrument combinations were previously investigated using linear correlation
and regression of blend rating with individual acoustic parameters [14]. This method
was able to account for 51% of the variance in blending ratings of unison perfor-
mance using composite centroid, attack contrast, and loudness correlation [14]. In
some later investigations, Multiple Linear Regression (MLR) was used to predict the
blending perception in accordance with the variation in spectral characteristics such as
the multi-parametric variance of the formants [33]. Due to high collinearity between
the variables involved, a Partial Least Square Regression (PLSR) based model was pro-
posed as an extension to the earlier studies to predict the blending rating on a diverse
data set of audio samples that included different instrument combinations with unison
and non-unison intervals, various pitch range and distinct excitation mechanisms [30].
These aforementioned studies utilized sound samples with sustained tones by limiting
musical features such as loudness, dynamics, duration, vibrato, location and relative
strength of formants, and so on. However, these mentioned musical features are mu-
tually and stochastically entangled in realistic joint musical performance recordings.
As a consequence, although the mentioned studies on isolated instrument tones give
insights into the potential parameters and their influence on the blending in musical
contexts, evaluation of the perception of blending on musically realistic ‘ecological’
sound samples remains unexplored.
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Role of acoustics environment on blending

Considering the room acoustic environment as a Linear Time-Invariant (LTI) system,
the way the system transforms the input signal (i.e., sound radiated from the sound
source) to the output (i.e., sound received by the listener) can be analyzed using Room
Impulse Response, which serves as the transfer function of the system. The Room Im-
pulse Response (RIR) illustrates how a room responds to a Dirac impulse generated
from a source by showing its transfer to the receiver as direct sound followed by a
series of impulses as room reflections with decaying amplitude with time. The time
domain representation of RIR demonstrates the strong early reflections, and late diffuse
reverberation caused by the room, as well as offers cues on the absorptive and diffu-
sive nature of the room. Based on the perceptual aspects, the RIR can be classified into
three regions: the direct sound part (i.e., 0 - 5 milliseconds), the early reflections (5 -
50 or 80 milliseconds), and late reverberation (80 milliseconds - end of RIR). The direct
sound from the instrument is crucial in sound source localization and distance esti-
mation. While the early reflections contribute to the perception of clarity and source
width impression, the late reverberation influences the perception of spaciousness and
envelopment [36]. Starting from Sabine’s reverberation time formula proposed in the
19th century, numerous room acoustic parameters developed over the last century
addressing different objective and subjective features of room acoustic environments
have been widely utilized in a standardized manner to characterize acoustic environ-
ments [37; 38]. A detailed description of these parameters including their equations
and estimation procedures is described in the Appendix A. These parameters derived
from RIRs, or a combination of them, have been shown to capture specific subjective
sensations and attributes associated with room acoustics perception, thereby offering a
comprehensive overview of the perceptual characteristics of the acoustic environment
[39; 40; 41; 42].

The blending of sound sources has been considered to be an important subjective
attribute of room acoustics and concert hall acoustics research [7; 43]. However, the
influence of different room acoustic attributes that shape the perception of blending
has not been thoroughly analyzed yet. Although no specific studies address the di-
rect relationship between the room acoustic attributes and the simultaneous grouping
principles of ASA, insights from studies on room acoustic perception offer valuable
clues about room acoustic attributes from spectral, temporal, loudness, and spatial
domains that could impact ASA and thereby alter the blending. Reverberation holds
major importance as it significantly alters the perceived timbre of instrument sounds
[12], influences themodulation depth of signals which in turn affects intelligibility [44],
and weakens the listeners’ ability to discern variations in fundamental frequencies and
the spatial localization of sound sources [45], thereby presumably affecting the overall
blending perception. Although not directly addressing blending perception, previous
literature aligns with these observations, indicating that the reverberation enhances
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the ‘melting’ of individual sound to form a closed overall sound [16], with some stud-
ies proposing the spatially enveloping late reverberation blends music naturally [46].

While small timing deviations in onsets/offsets in the order of 30-50 ms may re-
main as perceptually synchronous, the room reflections further improve temporal syn-
chrony between concurrent sounds by smoothing transient envelopes [47]. Addition-
ally, room acoustics display responsiveness to musical dynamics of stimuli by altering
the perceived impressions of dynamic levels, apparent source width, and envelopment
[48]. The spatial distribution of sound sources, including the positioning and orienta-
tion of constituent instruments within the ensemble (e.g. different orchestral seating
arrangements), has been reported to influence the ensemble sound and the blending
perception [16]. Accurate localization of constituent sources in the ensemble by the
listener may adversely affect the simultaneous grouping principles of sources in ASA
and thereby impact the blending. In that context, the room acoustic reflections have
been demonstrated to impact the perception of sound source localization, with reflec-
tions from specific directions (e.g., reflection from the floor, ceiling, sidewalls, etc.)
either enhancing or worsening the localization perception [49].

As an initial attempt to investigate the relationship between room acoustic at-
tributes and instrument blending, recent research on the perception of blending in
concert halls, utilizing binaural auralization of a string quartet, observed a significant
correlation between blending ratings and parameters such as the reverberation, treble
ratio, spatial envelopment, and sound strength [27]. However, it is unclear if room
acoustic reflections always enhance blending perception, moreover, it is possible that
the impact of the acoustic environment on the overall perception of blending can be
different for samples with different degrees of source-level blending. Therefore, a de-
tailed investigation is required to assess the individual contribution of source-level
blend and room acoustics in the overall perception of the blend, as well as to under-
stand the major room acoustic attributes that influence blending.

Auditory perception of musical blending

The perception of blending of sound sources is the result of the simultaneous grouping
of concurrent auditory streams, an auditory phenomenon described in Auditory Scene
Analysis (ASA) [29]. ASA refers to the process of extracting the auditory information
involved in a complexmix of sound arriving at the listener’s ears into distinct perceptu-
ally meaningful auditory objects by utilizing spectral, temporal, and spatial cues. This
psychoacoustic phenomenon is the key concept involved in the identification, localiza-
tion, and differentiation between various sound sources present in an ‘auditory scene’.
A well-familiar example of ASA in regular life is the cocktail party effect [50]. The
grouping or segregating of spectrally and temporally overlapped auditory information
from sound sources into separate mental representations known as auditory streams
is performed by ASA [29]. The grouping can be done in two conditions; simultaneous
grouping in the case of concurrent auditory streams, and sequential grouping in the

10



1.2. Background

case of temporally evolving auditory streams. While simultaneous grouping leading to
the fusion of sounds holds more importance in the blending of concurrent streams, the
sequential grouping leading to the association between temporally evolving sounds is
also relevant in musical contexts such as the judgment of rhythm and melody.

The grouping of auditory streams in ASA is fundamentally connected to the Gestalt
principles in psychology in audio perception, notably the principle of ‘common fate’
[14; 51]. This principle suggests that the sounds that undergo similar kinds of varia-
tions, such as synchronous onsets, matching frequency or amplitude modulation, and
parallel loudness variation, are grouped together and perceived as a part of a single au-
ditory object [51]. Moreover, the auditory system also seeks other relevant cues such
as timbral proximity, pitch similarity, closeness in spatial locations, etc., between the
sounds involved, for the perceptual grouping or segregation of auditory streams (more
details on the Gestalt principles of perceptual grouping can be found at [18; 52]). As
described in the previous section, the room acoustic characteristics have been shown
to impact these attributes. Therefore, the acoustic characteristics of the performance
spaces are expected to play a significant role in the perception of blending.

While listening to the musical performance, listeners extract auditory information
from the ensemble sound based on personal experience, preference, ability, and other
factors. Previous research indicates that musicians are shown to have sensitivity in
selectively attending to and analyzing the complex spectral and temporal features of
sounds, as compared to non-musicians [17; 18]. Therefore, major perceptual evalu-
ations carried out in this thesis work, including studies on blending perception and
other aspects of ensemble sounds, are exclusively carried out among the trained par-
ticipants including tonmeister students and musicians. By utilizing such a population
of trained people, concordant and more reliable results are expected in the perceptual
evaluations.
1.2.3 Directivity of musical instruments
The directivity characteristics of musical instruments, depicting the spatial distribu-
tion of energy radiated for each frequency, play a pivotal role in shaping the perceived
sound field of instrument performance. By affecting the loudness, timbral characteris-
tics, and spatial impression of the perceived instrument sound, the directivity charac-
teristics of instruments holds a significant role across many fields such as music per-
formance, instrument recording techniques, room acoustic simulation, and sound field
reconstruction [16; 53; 54; 55; 56]. The directivity characteristics of instruments are
frequency-dependent; in general, from an omnidirectional behavior at low frequen-
cies, they transition to highly complex directional characteristics at high frequencies
based on the properties of the instrument [16]. Additionally, the directivity is also
shown to be influenced by the notes being played [57]; difference in playing style or
fingering for performing a particular note would result in different directivity charac-
teristics.
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This thesis primarily deals with five different musical instruments with different di-
rectivity characteristics including trumpet, trombone, transverse flute, saxophone, and
violin, and the directivity properties of those instruments are described here briefly.
The directivity of the trumpet and trombone, the instruments from the brass family, is
mainly influenced by the shape and size of their bell and bore [16; 58]. For trumpets,
the bell of the instrument acts as the main radiation source, displaying an omnidirec-
tional behavior up to around 500 Hz. As the frequency increases beyond this point,
the instrument radiates mainly along the axis of the bell, showing rotational symme-
try relative to the bell axis [16]. As the frequency increases, the side lobes decrease
drastically in amplitude compared to the main radiating lobe along the bell axis, and
thus the instrument becomes highly directive in the high-frequency part of the spec-
trum. Trombones exhibit directivity characteristics similar to trumpets but with a shift
to lower frequencies due to the differences in geometry, particularly their larger flare
size [16; 54].

The overall radiation characteristics of the flute can be represented as a dipole be-
havior by describing the energy emitted from the blowing hole and the first open tone
hole (the far open end when all tone holes are closed while producing the lowest note)
[16]. The dipole sources radiate nearly equal energy in and out of phase, depending on
the order of harmonics. Unlike an omnidirectional behavior at low frequencies, this
leads to both constructive and destructive interference, which results in strong direc-
tional features. When multiple-tone holes are open, they contribute individually to the
overall radiation characteristics, particularly for themid and high-frequency range (for
high notes and partials of low notes) which makes the directivity pattern more com-
plex [58]. In the case of very high frequencies, the far open end of the flute serves
as the main radiating source [54]. The saxophone displays radiation properties akin
to the woodwind instruments, with radiation from the bell opening complemented by
radiation from the finger holes [59]. Consequently, unlike brass instruments which
have consistent strong and weak radiation regions, saxophones exhibit complex di-
rectional characteristics by producing interference lobes. While individual tone holes
contribute to radiation in the low-frequency range, for very high frequencies, partic-
ularly above the cut-off frequency specific to the tone hole lattice, radiation primarily
emanates from the open bell [58].

Violins exhibit a rather complex directivity pattern, which is known to show rapid
variations across frequencies, and whose behavior cannot be easily predicted except
in the lowest frequency range. Unlike brass or woodwind instruments, violins lack
a defined shape for directing the sound energy, which results in their intricate direc-
tional characteristics. The instrument’s vibrating plates are primarily responsible for
its directivity, with different points on the plates vibrating at varying amplitudes and
phases. Additionally, the f-hole contributes to the radiation characteristics, particularly
in the low-frequency range [16]. While the violin displays omnidirectional character-
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istics up to approximately 600 Hz, it produces complex directional patterns for higher
frequencies which are primarily radiated from the instrument’s top plate. [16; 54].

Figure 1.3: Directivities of musical instruments involved for low (400 Hz), mid (1000
Hz) high (2500 Hz) 1/3rd octave frequency bands, after [60; 61; 62; 63; 64]

Radiation patterns of musical instruments change rapidly in the temporal domain
for dynamicmusical samples. Furthermore, a small frequency shift within certain char-
acteristic frequency ranges can produce significant changes in its directional patterns
for specific instruments, such as violin [65]. Nevertheless, to provide an overview
into the overall trend of directional characteristics, the directivity patterns of the five
instruments involved in this thesis are depicted as 3D balloon plots in Figure 1.3 by
averaging for 1/3rd octave bands centered at 400 Hz, 1000 Hz, and 2500 Hz, respec-
tively (these plots are generated using the high-resolution directivity data published
by spatial audio library of Brigham Young University directivity [60; 61; 62; 63; 64]).
The complex directivity patterns generated across various frequencies within the spe-
cific frequency band are averaged and normalized to 0 dB as the maximum, and the
plot is constrained to a side view of the 3D representation with instruments oriented
towards the left side. While most instruments, with the exception of the flute, ap-
pear to exhibit omnidirectional behavior at lower frequencies, as mentioned above,
they tend to display more complex radiation patterns at higher frequency bands. The
highly directional characteristics of the trumpet and trombone having a strong beam
along its axis, the lobes arising from the interference of multiple radiating points in
saxophone and flute, and the complex directivity shapes of violins can be observed
from these plots. This underscores the diversity in directional characteristics among
the five sound sources examined in this study on source orientation perception.
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Directivity perception in room acoustic environments

Owing to the crucial importance of directivity, extensive research has been carried out
on modeling and measuring the directivity properties of individual instruments with
a high degree of accuracy [16; 66; 67]. Moreover, the geometrical and physical con-
struction aspects of the instruments that influence the directivity patterns have been
extensively analyzed for a wide range of instruments [58]. Despite these extensive ef-
forts, the perceptual aspects of directivity attributes of musical instruments in realistic
conditions remain relatively less explored.

The significance of directivity analyzed using room acoustic simulations indicated
that the difference between a specific and an averaged directivity filter of the sound
source in a simulated acoustic environment is reflected in the resultant room acoustic
parameter values [53]. Moreover, these directivity differences were noticed to be per-
ceptually perceivable, particularly as differences in loudness and clarity impression.
A study conducted on the perception of musical instruments modelled with omnidi-
rectional, realistically directional, and extremely directional directivities using room
acoustic simulations showed a significant difference between omnidirectional and ex-
tremely directional directivities in terms of the estimated room acoustic parameters
and the perceptual impressions [68]. However, the differences between omnidirec-
tional and realistically directional directivities were observed to be negligible, which
could be due to the limited frequency-band directivity data utilized in the study. Recent
studies have proposed that the listeners can distinguish the tone-dependent directiv-
ities from averaged directivity, especially in echoic conditions [69]. The variation in
directivity caused by the movement of sound sources during the performance, which
is an integral aspect in realistic performance conditions, is also found to be percep-
tually significant [57], thereby asertain the importance of directivity in sound source
representation.

When it comes to real-world applications, room acousticians often use electro-
acoustic sources for the playback ofmusical instrument recordings to know the ‘sound-
ing of the room’. Advancing from this, loudspeaker orchestra, in which a wide range
of instruments were represented as a combination of different electroacoustic sources
in a sophisticated manner, was used for the perceptual evaluation of concert halls and
acoustic measurements [70]. However, in these mentioned cases, the natural/realistic
impression and the perceptual similarity of these electro-acoustic substitutions to the
real instruments are not well-explored. Asmentioned above, the dynamic directivity of
instruments can get complex and drastically changing for specific frequency ranges or
specific notes. Therefore, these simplified approximations of directivity require inves-
tigation to assess their perceptual relevance, particularly in the context of a dynamic
musical performances in in-situ acoustic condition. Such explorations in in-situ con-
ditions could provide insights relevant for instrument recording techniques, etc., and
also contribute to optimizing the modeling of sound source directivity according to
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the limits of human auditory perception that is relevant for virtual acoustics-related
applications.

Another important aspect of directivity relevant in real and virtual acoustic en-
vironments is the perception of sound source orientation. The orientation of sound
sources is noted to have a key role in musical performance. For instance, the different
seating arrangements of instruments on stage with different orientations are used to
achieve certain acoustic goals [16]. The factors influencing source orientation percep-
tion are detailed in the coming section.

Source orientation perception

The perception of the source orientation is one of the important perceptual attributes
that is significantly influenced by the directivity characteristics of the sound source
[71]. Depending on the sound source directivity and room acoustic properties, dif-
ferent source orientations around its acoustic center would create differences in the
energy and spectral content of both direct sound and room acoustic reflections, espe-
cially first and second early reflections, in a specific listener location [71]. This effect
is most notable in high frequencies due to the complex directivity characteristics aris-
ing from the instruments. These variations could lead to alterations in the loudness,
timbre, intelligibility, and spatial impression of the perceived sound, which have signif-
icant implications in fields such as music performance and perception, communication
acoustics, and virtual acoustic applications.

While the auditory perception of sound source localization and distance percep-
tions has been extensively analyzed in the past decades [72; 73; 74], most studies on
source localization and distance perception have typically focused on the speaker fac-
ing the receiver condition and did not explore the role of other ‘facing angles’ on their
perception. Despite its significant importance, the perception of the source orientation
and the factors influencing it in in-situ conditions have remained largely unexplored.
While the majority of research conducted on this topic was focused on orientation
perception and its influential factors in anechoic or semi-anechoic conditions [75; 76],
only a limited number of studies considered echoic environments to examine the in-
fluence of room acoustic reflections on orientation perception [77; 78; 79; 71].

The accuracy of orientation prediction is observed to be higher when the source is
oriented toward the receiver [80; 76; 79], and this trend appears to hold true in both
echoic and anechoic conditions. The acoustic attributes influencing the orientation
perception in anechoic conditions are observed to be from different domains for lateral
and medial orientations; lateral orientations depend on spatial cues, whereas medial
orientations rely on monaural cues due to the absence of spatial cues. The Interaural
Level Difference (ILD), the difference in Sound Pressure Level between the two ears,
is observed to be a key binaural cue for lateral (i.e., left and right) direction judgment
for lateral orientations in anechoic conditions [75; 76]. Since ILDs are absent in medial
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(front, back) orientations [75], monaural cues such as overall level difference, access
to high-frequency sound, and spectral tilt variation in high-frequency regions are ob-
served to provide cues for medial orientation judgments [76; 79; 81].

When it comes to source orientation perception in room acoustic environments,
certain studies propose that orientation perception is generally more challenging in
echoic environments compared to anechoic conditions [77]. However, there are con-
tradictory findings suggesting that listeners also perform well in room acoustic en-
vironments, with certain specific directions having high prediction accuracy [78; 79].
Room acoustic reflections have been demonstrated to impact the perception of sound
source localization, with reflections from specific directions (e.g., reflection from the
floor, ceiling, etc.) either enhancing or impairing it [49]. Likewise, certain room acous-
tic reflections are expected to impact the perception of source orientation [82]. A recent
study conducted on the ability to perceive the orientation of a human speaker in sim-
plified simulated room acoustic environments suggests the importance of strong early
reflections in improving orientation perception [71]. This study also demonstrates
that the presence of first-order reflections carrying directivity information strongly
supports the source orientation perception while the higher-order reflections with
directivity information might not be necessary [71]. This aligns well with the ob-
servations from previous studies where the presence of first-order reflections such as
strong side-wall and back-wall reflections resulted in easy identifications in those spe-
cific orientations [78; 79]. ILDs generated from strong early reflections are observed
to be a significant parameter in predicting orientation in the left-right directions in
room acoustic environments, while less pronounced ILDs are also observed to hinder
left-right orientation prediction [71]. Moreover, the prediction accuracies are also ob-
served to decrease with a decrease in Direct-to-Reverberant Ratio (DRR) and change in
spectral coloration from low-pass characteristics of source directivity in room acoustic
environments [79; 71].

Studies on source orientation conducted so far have been primarily concentrated in
the area of communication acoustics. Consequently, they were constrained by the use
of human speakers [77; 81; 76; 82; 71] or loudspeakers [75; 79] as the sound sources,
which possess relatively simplified directivity patterns, for producing voice signals or
broadband noise. While the directivity of the sound source is observed to be a factor
influencing orientation perception results [79], it still demands a comprehensive in-
vestigation, especially for musical instruments. Furthermore, the role of room acous-
tic attributes in orientation perception in in-situ conditions needs to be analyzed, by
incorporating real room acoustic environments with diverse acoustic characteristics
rather than simplified simulated environments utilized in earlier studies [71].
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1.2.4 Auralization of ensemble sound

“Auralization is the process of rendering audible, by physical or mathematical modeling,
the sound field of a source in a space, in such a way as to simulate the binaural listening
experience at a given position in the modeled space”, defines M. Kleiner, who coined the
term Auralization [83]. This process can be performed using simulated, measured, or
synthesized numerical data [84].

As previously noted, the process of auralization involves different stages. It starts
with capturing the source signal, which can be live for real-time auralization, or recorded.
The second stage involves convolving it with the Room Impulse Response (RIR), which
encapsulates the transfer function of sound from the instrument to the receiver. The
RIRs can be of two kind; Spatial Room Impulse Responses (SRIRs), which capture the
spatial sound field using an array of microphones (e.g. ambisonics microphone), and
Binaural Room Impulse Responses (BRIRs), which capture the spatial sound field using
a binaural head. These SRIRs or BRIRs represent the transfer function of an impulsive
sound generated by the source to the receiver, which can be measured from in-situ
conditions, simulated from computer models, or synthesized from existing data. Mod-
eling the source and receiver characteristics, such as source directivity and Head Re-
lated Transfer Function (HRTF), is important at this stage. The in-situ measurement of
these impulse responses is conducted by exciting the room acoustic environment with
a Dirac impulse using an electroacoustic source and capturing the resultant sound field
at the receiver location using a microphone array or a binaural head. While it can cap-
ture complex geometrical and acoustical properties of the room, the electroacoustic
source exciting the room with a directivity that is close to the real instrument is the
crucial part here. While simulated environments allow modeling the sound source
with a directivity close to the real instruments, accurately capturing the physical and
acoustic aspects of room acoustics is a challenge in acoustic simulations. The final
stage of auralization involves the reproduction of sound using loudspeaker arrays for
the spatial sound field, or using headphones for the binaural sound field. While spatial
sound field reproduction advances in accurately reproducing sound fields with an in-
creasing number of channels, it is often restricted to laboratory conditions due to the
complexity of the hardware setup. On the other hand, the binaural sound field repro-
duction using headphones offers advantages for real-world applications. The binaural
sound field reproduction can be advanced further by implementing real-time rendering
to allow head movements, and customization of HRTFs for better accuracy.

Figure 1.4 represents the flow diagram of the different stages involved in the aural-
ization of an ensemble sound in virtual acoustic environments. Additionally, when it
comes to real-time auralization of ensemble performance, incorporating interactions
between musicians and feedback from the simulated acoustic environment is essen-
tial for achieving real-time performance and perception of the virtual orchestra. The
details of each individual aspect involved here are described in the coming sections.
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Figure 1.4: Flow diagram of the factors involved in the auralization of a musical en-
semble in virtual acoustic environment.

Capturing of source signals

When it comes to capturing acoustically ‘clean’ source signals for the auralization
of individual sources, recording a musical instrument in an anechoic environment
with/without directivity is a trivial and direct solution. However, in the case of au-
ralization of joint musical performance, accurate capturing of the individual source
signal is one of the most important but less explored aspects. Three notable ways
followed to capture the signals of individual sound sources in a joint musical perfor-
mance are; (1) recording each instrument in the orchestra individually in an anechoic
chamber by providing external visual/aural cues[85; 86; 87], (2) keeping the whole
orchestra instruments in the anechoic chamber and recording them simultaneously
by close-miking techniques [88; 89], and (3) recording individual sound sources us-
ing close-miking techniques during a joint musical performance in a regular musical
performance space [19].

According to previous studies, factors such as the visual and audio feedback from
the musicians[1; 2], joint performance strategies[5; 4], and the room acoustic feedback
to the musicians[10; 13] are shown to have a significant impact on the individual per-
formances of instruments in ensemble and thereby influence the resulting ensemble
sound. Although the research carried out using the first two aforementioned record-
ing techniques had secondary means to compensate for the performance attributes,
their recorded outputs might not be an intrinsic and natural representation of the or-
chestral/ensemble sound. However, the third method includes the natural and intrisic
attributes of joint performance and acoustic feedback in their recordings. Moreover,
it is particularly advantageous when it comes to real-time auralization of an ensem-
ble performance in in-situ conditions. The spectral colouration that can occur due to
the spatial positioning and frequency response of the microphones used can influence
the plausibility and timbre of the auralized output signal, but it’s an unavoidable error
that is present in all three discussed methods to different extends. While the close-mic
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recordings are expected to have a high direct sound contribution compared to the re-
verberation, the influence of cross-talk between sound sources due to spatial proximity,
noise from the musician and instrument, and the strong room acoustic feedback in re-
verberant environments could degrade their recording quality. Therefore, it is required
to analyze the quality of clip-on microphone recordings in delivering a perceptually
convincing sound field of an ensemble by reconstructing an orchestral performance.

Modelling of directivity of sound source

Figure 1.5: A high resolution directivity measurement setup of a trumpet with man-
nequin, employing a 3D turn table, and offering a 5° spatial resolution resulting 2,522
unique measurement points (from [67]).

Given that physically accurate sound field reconstruction necessitates detailed di-
rectivity information of sound sources, substantial efforts have been invested toward
capturing the high spatial and spectral resolution directivity of musical instruments
and human voice for virtual acoustic applications [66; 67]. Figure 1.5 presents high
resolution directivity measurement setup of a trumpet with mannequin, by utilizing
a 3D turn-table, to achieve 5° spatial resolution directivity data which results in 2,522
individual measurement points (presented at [67]). Despite the considerable efforts in-
volved in these high-resolution directivity measurements, the perceptual significance
of the high spatial and spectral resolution of the directivity of sound sources remains
unclear. While representing instruments with tone-dependent directivity filters with
high spectral and spatial resolution can result in accurate reproduction of sound fields,
it is constrained in practical conditions due to the heavy computational efforts. There-
fore, to have a balance between the perceptual relevance and practical applicability,
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the 1/3rd octave band frequency-averaged directivity data is being commonly used in
room acoustic simulations. Regarding spatial resolution, in certain GA-based simula-
tions such as Odeon, the spatial resolution of directivity is possible until 5° angular
resolution. However, it is not clear whether representation of instrument directivities
with such a spectral and spatial resolution of could produce a perceptually plausi-
ble auralization of a sound source. Therefore, it is essential to evaluate the perceptual
thresholds of spectral and spatial resolutions of directivity data after which no perceiv-
able changes in the auralization can be detected. This would enable computationally
efficient modeling of sound sources for a perceptually plausible sound field synthesis
in comparison to the ones with high-resolution directivity data.

Recent research have explored the perceptual threshold of spatial resolution of di-
rectivity data by incorporating controlled variation in the spatial resolution of direc-
tivity shapes through truncation of Spherical harmonics (SH) orders [90; 91]. This was
primarily conducted for voice directivity using voice samples and broadband noise,
where a perceptual threshold of SH order between 3-4, and 8.4 are detected. Future
studies should extend on wide range of musical instruments with complex directivity
characteristics, and also the role of factors such as room acoustic attributes should also
be explored. Such perceptual threshold related studies are particularly important when
it comes to the auralization of ensemble performances in virtual reality applications.
As multiple sound sources need to be rendered simultaneously in real time, knowing
the perceptual threshold would significantly impact the computational efforts.

Room acoustic simulation

The origin of computer-based room acoustic simulation was over six decades ago [92],
but it became widely utilized in general practice in the 1990s with the advancement of
computer technology [93]. Modern room acoustic simulations offer various features
such as visualization of sound propagation in 3D space, estimation of RIRs for particu-
lar source-receiver positions, assessment of room acoustic parameters, and so on. This
helps to modify the room geometries and materials applied to the boundary surfaces to
achieve certain acoustic characteristics tailored to specific sonic goals. By facilitating
customization and personalization of room acoustic environment design through sav-
ing cost and time, the room acoustic simulation has proven to be a key tool in the design
and construction of rooms according to regulatory standards and auditory perception-
oriented requirements. Consequently, it has been utilized in various areas such as room
acoustic planning [20], architectural and archaeological acoustics [22; 23; 94], music
performance research [11], Virtual Reality (VR) and Extended Reality (XR) [19], and
so on.

The room acoustic simulations can be classified into two categories based on their
approaches, namely wave-based simulations and Geometrical Acoustics (GA) based
simulations. Wave-based room acoustic simulations model the sound propagation
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as a wave phenomenon and solve it using wave equations. They take into account
the complicated wave-related attributes such as diffraction and interference, that are
especially important in low frequencies. Finite-Element Method (FEM), Boundary-
Element Method (BEM), and Finite-difference Time-Domain (FDTD) are some of the
common techniques utilized in wave-based room acoustic simulations (more details
can be found at [84]). While this simulation method can accurately model the complex
room geometries and get more accurate results across the different frequency bands,
it is computationally demanding and relatively difficult to implement. On the other
hand, Geometrical Acoustics (GA) based simulations neglect the wave properties of
sound and treat it as rays. These simulations follow the principles of optics to model
the propagation, reflection, and absorption of rays. As a result, the GA-based simula-
tions are valid in mid to high-frequency ranges and are suitable for conditions where
the wavelength of sound is much smaller than the surface and overall dimension of
the room, which is true in most cases [93; 84].

Whereas classical GA-based simulations can not account for the wave phenomena,
which result in a higher error rate in low-frequency bands, the state-of-the-art GA
simulations have incorporated methods to introduce wave phenomena like diffraction
to some extent [93; 95; 96], thereby reducing the error in the low-frequency range. Al-
though having limitations in the accurate reproduction of real environments [97], they
have been shown to provide a perceptually plausible recreation of room acoustic en-
vironments. Moreover, despite having limitations in handling complex low-frequency
wave phenomena, the GA-based modeling technique offers advantages for controlled
auditory experiments, including creating physically invalid imaginary rooms, estimat-
ing numerous room acoustic parameters accurately that can be laborious in real-life
situations, and enabling flexibility for controlled adjustments of geometrical and acous-
tic attributes without background noise and distortion with fast and computationally
efficient performance. As a result, they are widely utilized in regular practice as well
as in numerous auditory perception-related investigations for simulating acoustic en-
vironments [98; 68; 99; 100].

Twomajor methods involved in GA-based simulations are the Ray-Tracing method
and the Image-Sourcemethod. In ray tracing, the sound is modeled as a set of rays from
the source, with each ray carrying a certain energy [101]. These rays interact with the
boundaries (walls and other surfaces), lose energy according to the wall properties, and
finally get collected at a particular receiver location using a surface or a volume detec-
tor. It is a stochastic simulation technique based on Monte Carlo methods, and there-
fore the results will have certain fluctuations based on the number of rays emitted. On
the other hand, originating from concepts in electrostatics, the image source method is
a deterministic model that ideally workswith specular reflections. In this method, a ray
from the source hitted and reflected from a wall can be considered as originating from
an ‘image source’, a mirror image of the actual source [102]. This image source solu-
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tion can be recursively applied for each reflection of a ray until it reaches the receiver,
which is modeled as a point detector in this method. While the image source method
accurately estimates sound reflections, particularly specular reflections, it struggles to
include complex geometries and diffuse reflections. Conversely, ray tracing can ac-
commodate complex geometries and scattering reflections, but an accurate estimation
of a particular reflection requires a high number of rays that results in higher com-
putational effort. Combining their advantages and disadvantages, a hybrid model as
a combination of these two methods, the image source method for the accurate esti-
mation of early reflections and the ray tracing method for the estimation of diffuse
reverberation for complex geometries, has been widely utilized for an improved and
optimized modeling in GA-based simulations [84].

Considering the advantages of recreating room acoustic environments and intro-
ducing controlled variations in the acoustics of simulated environments, GA-based
hybrid simulations are utilized in certain investigations involved in this thesis for the
creation and controlled variation of virtual room acoustic environments. Two major
simulation software utilized in this thesis are ODEON version 17, a commercially used
room acoustic simulation software [96], and RAVEN (RoomAcoustics for Virtual Envi-
ronments), a simulation environment developed for academic purposes [95; 103]. Both
ODEON and RAVEN incorporate a hybrid approach that combines the image source
method for early reflections and the ray tracing method for late reverberations. More-
over, both of them have incorporated diffraction effects to an extent to achieve phys-
ically valid results. Furthermore, by including features such as frequency-dependent
absorption and scattering properties of the boundaries, as well as unique directivity
characteristics of both the source and receiver, they represent state-of-the-art plat-
forms in their field.

Sound field synthesis

Integrating the techniques of signal processing, electro-acoustics, and psychoacous-
tics, the Sound field synthesis aims to create or reproduce a spatial sound field through
audio playback systems. In contrast to the basic sound field production techniques
possessing spatial cues such as stereo panning and commercial surround sound sys-
tems that are utilized for aesthetic or entertainment purposes such as movies or mu-
sic production, sound field synthesis in auralization aims to achieve a physics-based
physically more accurate creation of sound fields. This is vital for preserving a precise
directionality and timbre of direct sound and early reflections, that are highly relevant
for auditory tasks such as localization and characterization of sound sources and au-
ditory scenes. As a result, the spatial sound field synthesis of auralization achieves
a relatively higher degree of realism that is essential for VR-related tasks. The spa-
tial sound field synthesis can be divided into two major classes that are loudspeaker-
based reproduction and headphone-based reproduction. Some of the well-known tech-
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niques in loudspeaker-based spatial sound field synthesis include Wave field synthesis
(WFS), Vector-based amplitude panning (VBAP), and Ambisonics, while headphone-
based spatial sound field synthesis generally refers to binaural reproduction.

VBAP utilizes amplitude panning across a set of spatially distributed loudspeakers
to place a virtual sound source at a desired position. This is achieved by estimating a
combination of loudspeakers, typically triplets of loudspeakers, that approximates the
source direction and applying the source signal to these speakers with appropriate am-
plitudes [104]. The Ambisonics technique encodes the sound field as a linear combina-
tion of Spherical Harmonics in a specific Ambisonics format, typically in B-format. The
synthesis of the sound field is carried out by decoding the signal according to the given
loudspeaker layout, during which the amplitude and phase of individual loudspeakers
are controlled to reconstruct the encoded sound field [105]. Higher-Order Ambison-
ics (HOA) utilizes the same principle to recreate the sound field with more detailing
in directionality and higher spatial resolution resulting in a higher degree of realism.
However, this method requires a higher number of microphones and loudspeakers to
capture and reconstruct the sound field. Based on the Huygens-Fresnel principle, the
WFS technique synthesizes the spatial sound field by reconstructing the wavefront ra-
diated from the sound source placed at a virtual source position [106]. This is carried
out by precisely controlling the magnitude and phase of an array of closely spaced
loudspeakers. Although this method can theoretically recreate complex wavefronts,
the sound field synthesis using WFS is mostly constrained to the horizontal plane due
to practical difficulties.

Binaural sound field reproduction can be achieved either by convolving the source
signals with the BRIRs or by performing binaural recording of a sound source in the
acoustic environment and reproducing it using headphones. While the multichannel
loudspeaker-based sound field reproduction aims to create a spatial sound field impres-
sion for a particular listening point (in VBAP and ambisonics) or a particular listening
area (WFS), the headphone-based binaural reproduction only considers providing the
appropriate signals at the two channels for the two ears. Given its straightforwardness
and minimal hardware requirement, it becomes more important in real-world condi-
tions such as emerging VR and XR applications along with head-mounted displays.
The binaural sound field capture using the microphones placed at the ear canal of the
dummy head is intended to capture interaural cues such ILD, and Interaural Time Dif-
ference (ITD), etc. This enables binaural reproduction to deliver these cues directly to
the listener’s ears, which helps in perceiving a spatial auditory scene [74]. The spec-
tral content of sound arriving from certain directions is filtered by the pinna (outer
ear) structure, while the anthropometry of the head, shoulders, and torso, are also ob-
served to contribute to the filtering of the sound signals. Together, these spectral and
spatial cues facilitate auditory perception-related tasks such as source localization in
both horizontal and vertical planes, as well as distance estimation.
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The way outer ear alters the sound signals of different frequencies from various
spatial orientations before they reach the inner ear is referred as the Head-Related
Transfer Function (HRTF). Since the physical geometries of head and ear can vary be-
tween person to person depending on their shape of pinna, size and geometry of head
and shoulders, etc., each person is expected to have unique HRTF, resulting in indi-
vidual ways of perceiving the auditory scenes. Therefore, using a typical HRTF of a
dummy binaural head may not necessarily match every individual, which would result
in issues such as lack of externalization, and front-back confusions [107; 108; 109]. A
solution to this is to use personalized HRTFs for binaural rendering. Apart from con-
ventional methods to capture HRTFs in anechoic environments, predicting the HRTFs
from the image data of the outer ear is currently developing research area [110; 111],
which is expected to take the binaural rendering forward. While head rotation is an
inherent attribute in loudspeaker based sound field reproduction, by incorporating a
head tracker and a real-time binaural rendering technique, head rotation and head
movements can be possible in this technique as well.

1.3 Scope of the thesis
While previous studies addressed blending from two distinct directions – one as a
music-perception problem at the instrument level without an acoustic environment,
and the other as a subjective attribute in the perceptual evaluation of acoustic envi-
ronments – a unified approach that integrates these aspects has not yet been intro-
duced. Previous investigations on blending between instruments had limitations in
utilizing musically realistic audio stimuli, rather they were restricted to musical notes
or chords. Moreover, the distinct contributions made by source-level blending and the
room acoustic environment, in the overall blending, as well as the major room acous-
tics attributes involved in it have not been thoroughly investigated yet.

When it comes to instrument directivity, while numerous instruments are observed
to show rapid variations in directivity patterns across frequencies that are dynamically
varying with musical signals, their perceptual relevance in in-situ performance envi-
ronments remains underexplored. Furthermore, while localization of sound sources is
well explored, the investigation of directivity-related attributes such as source orienta-
tion perception is limited to sources with simplified directivity patterns by overlooking
the influence of room acoustics in it.

Exploring the quality requirements of source signals for ensemble performances
and evaluating the perceptual relevance of directivity representation of sources in the
simulation are important aspects related to the sound source representation in the
auralization of joint performances. Although this thesis does not directly focus on the
advancement of virtual reality acoustics, investigations of the aforementioned aspects
are expected to contribute to the advancement of a perceptually plausible recreation
of an authentic and intrinsic musical ensemble sound.
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Since most of the aforementioned problems are complex and multidimensional,
analyzing all the involved aspects in each problem exceeds the scope of a thesis. Nev-
ertheless, as an initial step towards evaluating the ensemble sound in a realistic perfor-
mance context, certain aspects of these individual problems are investigated in several
stages. The contents involved in the thesis can be grouped into three modules.

1. Investigations on musical performance-based representation of sound sources:
this includes an initial exploration of ensemble sound and musical blending using live
ensemble performance, assessment of source level blending between instruments in
joint performance for musically realistic sound samples, and evaluation of the quality
of close-mic recordings of instrument in joint performance for auralization of ensemble
sound.

2. Exploration of directivity perception-related aspects: this addresses the sound
source orientation perception for diverse musical instruments and also analyses per-
ceptual differences caused by differences in source directivity characteristics, by utiliz-
ing the performance of individual musical instruments in diverse room acoustic condi-
tions. Based on the results, the perceptual relevance of spatial resolution of directivity
filter in simulations is analyzed for ensemble performance.

3. Analysis of the role of room acoustics on ensemble sound; this final module
analyzes the role of room acoustic environments in shaping musical blending by es-
timating the major attributes involved and thereby presenting its role in ensemble
sound.

These aspects are investigated in this thesis by utilizing in-situ recordings of in-
dividual and joint musical performances of different instruments in diverse acoustic
environments. Additionally, auralization techniques including GA-based room acous-
tic simulation and binaural rendering are also utilized for experimenting in controlled
room acoustic environments. Combining the acoustic and perceptual attributes of
sound sources in the ensemble sound formation and auralization, Figure 1.6 presents
a schematic diagram depicting the major topics covered in the thesis and highlighting
the structure of the research problems addressed, thereby providing an overall per-
spective of the thesis framework. Collectively, these studies are expected to integrate
and thereby improve the understanding of perception-based acoustic representation
of musical instruments in joint performances.
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1.4 Structure of the thesis

Chapter 2 details the performance and recording of a string ensemble in various
acoustic settings, accompanied by an in-situ live listening test. This listening test ex-
plores the overall blending in a broader perspective and offers initial insights about
the definition of ‘ensemble sound’. The recordings presented in this chapter serve as
material for some of the following investigations involved in the thesis.

Chapter 3 introduces a computational modeling approach to classify musically re-
alistic sound samples according to their source-level blending impression. Combining
the methods of Machine Learning (ML) and Music Information Retrieval (MIR), this
modeling approach incorporates ‘ecological’ score-independent sound samples with-
out requiring access to individual source recordings, thereby contributing to the holis-
tic modeling of source-level blending.

Chapter 4 investigates the perceptual quality of utilizing clip-onmicrophone record-
ings for the auralization of an ensemble performance with varying numbers of instru-
ments. This is accomplished by auralizing a joint performance using in-situ measure-
ments and room acoustic simulations and comparing them with a binaural recording
of an actual musical performance.

Chapter 5 investigates the perception of sound source orientation by analyzing
the role of source directivity and room acoustic attributes in it. Moreover the study
explores the potential acoustic parameters influencing orientation perception in in-
situ conditions.

Chapter 6 examines the perception of dynamic directivity of variety of musical
instruments in in-situ conditions by comparing the binaural recordings of real instru-
ment performances against those generated by two electroacoustic sources (omnidi-
rectional source and studio monitor).

Chapter 7 explores the perceptual relevance of high-spatial resolution directivity
data of instruments in auralization of ensemble performance with different number of
sources. This is carried out for sources with distinct directivity characteristics (violin
and trumpet), in echoic and anechoic conditions.

Chapter 8 presents a statistical modeling approach to evaluate the perceived over-
all blending between instruments in joint performance by evaluating the contribution
of source-level blending and its alteration brought by the room acoustics. The chap-
ter underscores the intricate relationship between room acoustic attributes with the
different degrees of source-level blending, and also demonstrates the major factors in-
fluencing the overall blending.

Finally,Chapter 9 presents the overall findings and conclusions derived from these
investigations, and also discusses the potential future work directions.
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Figure 1.6: A schematic diagram depicting the major topics covered in the thesis.
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Chapter 2

Exploring Ensemble sound:
ensemble recording and live
listening test

"How many instruments are necessary to generate an ensemble sound?" is a funda-
mental question that is crucial for the perceptually relevant acoustic representation of
sound sources within the ensemble. Although this is influenced by themusical context,
genre of music, and the expected sonic characteristics, apart from the loudness-related
aspects, the minimum number of instruments needed to achieve the ‘richness’ in the
ensemble sound is still subject to research. The impression of blending, another major
attribute of ensemble sound, can be analyzed from macroscopic and microscopic per-
spectives. The macroscopic perspective considers the overall impact of blending by a
musical performance on the listener, while the microscopic perspective focuses on the
detailed analysis of minute-level variations in specific regions of sound samples. Uti-
lizing a live performance of a violin ensemble, this chapter presents a pilot study that
explores the blending perception from a macroscopic perspective. This was carried
out by assessing the ability of listeners to predict the number of sources in a musically
realistic ensemble performance in variable acoustic conditions as well as evaluating
the ensemble sound impression. Furthermore, this chapter also outlines the methods
used for simultaneous recording of the ensemble performance to gather materials for
studies related to ensemble sound and blending perception presented in this thesis. A
part of the content presented in this chapter is reproduced from the following research
article with the permission of the Deutsche Gesellschaft für Akustik e.V:

J. Thilakan, Malte Kob, "Evaluation of subjective impression of instrument blending
in a string ensemble", Fortschritte der Akustik- DAGA, Vienna, (2021).
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2.1 Materials and methods

A string ensemble consisting of 9 violins was performed at Detmold concert house
as a part of a live listening test as well as an ensemble recording process. This en-
semble performance was conducted as the third ODESSA (Orchestral Distribution Ef-
fects in Sound, Space, and Acoustics) project [112]. Previous studies have shown that
factors such as the acoustic characteristics of the performance space, the number of
constituent sound sources and their distribution and orientation on stage, etc., signifi-
cantly impact the resultant sound field of an ensemble, thereby affecting the perception
of blending [16; 26; 27]. Therefore, the variations in the room acoustic characteristics
of the concert house, the number of violins in the ensemble, and the spatial distribu-
tion of both the musicians and the listeners are diversified in this investigation to gain
a preliminary understanding of how these factors influence the ensemble sound and
blending perception in a live musical performance context. Additionally, the perfor-
mances of the ensemble were simultaneously recorded using various methods such as
individual clip-on microphones, stereo pair microphones, binaural heads, and so on.
The procedure of the listening test and the methods of ensemble performance record-
ing in this investigation are explained in the following sections.

2.1.1 Performance of listening test

The objective of the listening test was to investigate the blending perception from
a macroscopic perspective within a musically realistic real-world setting while also
exploring the perception of ‘ensemble sound’. Ensemble sound remains an under-
explored topic that may not be directly related to blending perception and can be
researched as an independent aspect of ensemble perception, as performed in earlier
studies [26]. While blending is likely a contributing factor to ensemble sound, it can be
hypothesized that a performancemay convey a convincing ensemble sound impression
even when the degree of blending is not high. As previously discussed in section 1.2.2,
apart from assessing the blending on a rating scale, the identifiability of the constituent
sound sources involved in the concurrent sound of joint performance can serve as an
indicator of perceived blending impression, where high identifiability of constituent
sources corresponds to a poorer blending impression. Therefore, this test evaluates
both the identifiability of individual sound sources in an ensemble performance in di-
verse acoustic conditions and the impression of ‘ensemble sound’, using live ensemble
performances with different numbers of violins in diverse acoustic environments.

A group of 16 participants (7 female, 9 male), with 14 of them having musical back-
grounds, participated in the listening test. Unlike the upcoming perceptual evaluations
presented in this thesis, not all of the test participants in this pilot study were musically
and technically ear-trained. The overall goal of the experiment and the procedure of
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the listening test were explained to them at the beginning of the test to make the test
participants aware of the objective of this investigation. Themusicians in the violin en-
semble were students of HfMDetmold. In the beginning of the test, the musicians were
asked to perform two musical pieces utilized in the earlier ODESSA recordings (Sym-
phony No. 6 in Bminor, I. Adagio –Allegro non troppo by Tchaikovsky, and Sonata
No. 12 in A flatmajor, II. Scherzo by Beethoven) sequentially in unison with a group of
violins starting from 1 to 9 with an increment of one violin. As a result, musicians got
familiar with the piece and adapted to the joint performance with others whereas the
test participants were able to develop an idea of the overall sounding impression with
the increase in the number of violins. Although the acoustic conditions and number
of instruments changed during the test, the musicians were requested to perform with
the highest possible impression of blending in all the conditions.

The formal test started following the training session, and it was performed in two
parts: in the first part, the listeners were advised to sit in the prescribed seats in the
predefined locations of the Concert House, labelled as A, B, C, D, and E as shown in
Figure 2.1, and in the second part, the listeners were free to choose seats according to
their individual preferences. Out of the 16 participants, each of the groups A, B, and C
had four participants, and D and E were combined into one consisting of four partic-
ipants collectively. Listener locations A and B were within the critical distance from
the source, where there is a strong impression of direct sound and the sound pressure
decreases with distance. In contrast, locations C, D, and E were outside the critical
distance, where the reverberation of the room dominates, and the sound pressure level
remains nearly uniform.

In each part of the listening test, four different acoustic variations were presented.
This included changing the seating arrangement on the stage and altering the acous-
tic characteristics of the concert house using the room acoustic enhancement system
installed in the concert house. Firstly, two instrument seating arrangements in the nat-
ural room acoustic condition of the Detmold concert house (RT60 = 1.6 seconds) were
included in which violins are mainly radiated toward the listeners (analogous to the
German way of string section arrangement; denoted as S1 in Figure 2.1), or toward
the rear wall of the stage (similar to the American way of string section arrangement;
denoted as S2 in Figure 2.1). Secondly, apart from the natural acoustics of the concert
house, two artificial reverberation conditions with reverberation times of 2.3 seconds
and 3.2 seconds with S1 seating arrangement were also included, by using a room
acoustic enhancement system installed in the concert house.

In the first part of the test, for a specific acoustic condition, a music conductor on
the stage arbitrarily decided the number of violins to play together in the ensemble
for each take from one of six scenarios: 1, 2, 3, 4, 6, and 9 violins. Accordingly, the
string ensemble with the chosen number of violins performed the two musical pieces
which lasted around 60 seconds. For each round of performance, the conductor gave
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Figure 2.1: The position and orientation of sound sources, binaural heads, and listening
test participants in Detmold Concert House.

a cue to everyone, and the listeners were asked to close their eyes and listen to the
samples. Once the performance of the two pieces was over, the listeners were asked to
predict the number of violins involved in the ensemble performed and also to indicate
whether it sounded like an ensemble or not (yes or no). As per definition, the increase
in the confusion in identifying the correct number of instruments in the ensemble
corresponds to a higher degree of blending. After the performances in the four acoustic
conditions with six different combinations of violins in the first part of the test, the
listeners were allowed to choose their favorite seats in the concert house and repeat
the same process in the second part. The test altogether took 2 hours to complete with
a small break in between parts 1 and 2.

2.1.2 String ensemble recording setup

The performance of the string ensemble was captured using stereo pair microphones,
an acoustic camera, three binaural heads, and clip-on microphones attached to the in-
dividual instruments. The stereo pair recordings were intended for artistic recording
purposes, while the acoustic camera was used to analyze the radiation characteris-
tics of the ensemble as a whole as well as spot significant room acoustic reflections.
The close microphone recordings of the individual instruments as well as the binaural
head recording of the ensemble performance were mainly utilized in this thesis work.
Therefore, the methods and equipment utilized in these two types of recordings are
given below.
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close microphone recordings: Considering the influence of factors such as coor-
dinated action, joint strategies among musicians, and room acoustic feedback on the
resultant ensemble sound, the finest way to obtain the authentic source signals of in-
struments in joint performances is to record the sources individually in in-situ condi-
tions. This is specifically important in phenomena like musical blending where joint
performance strategies play a major role. Therefore, in this study, the individual vio-
lins in the string ensemble were recorded using ‘DPA 4099 Core Violin’ clip-on micro-
phones attached to the body of the instrument. The DPA mics were positioned close
to the violin bridge in order to better capture individual source signals from the joint
performance as shown in Figure 2.2. These microphones have a frequency response
of 20Hz – 20 kHz with an effective frequency range of 80Hz–15 kHz (± 2 dB) at 20 cm
distance. The musicians in the ensemble were seated with a separation of roughly 0.8
to 1 meter, and equal gain was applied for all the DPA microphone tracks in the sound
card while recording. Due to the super-cardioid directivity characteristic of the DPA
microphones and their placement close to the instrument, the DPA recordings are ex-
pected to minimize cross-talk from other instruments and room acoustic reflections
[113]. Since these close microphone recordings can be assumed to be authentic and
intrinsic representatives of realistic musical performances possessing minimal ambi-
ent noise and microphone cross-talk, they were utilized in this investigation to obtain
sound samples of joint performances in the upcoming investigations.

Figure 2.2: Position and orientation of DPA clip-on microphone on violin.

Binaural recordings: Three binaural heads were utilized in this study to capture
the sound field of the ensemble performances. The location and orientation of the
individual and binaural head (denoted as BH) in the concert house are presented in
Figure 2.1. A portable BHS II headphone unit SQobold–4 data acquisition system from
head acoustics [114] was used to capture the binaural signal at the location of BH1.
The Head Acoustics HSU III.2 binaural head, equipped with a head-shoulder unit and
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ICP measurement microphones [115], was placed at the location of BH2 in the far field.
Additionally, Neumann’s KU-100 binaural head [116], a commonly used dummy head
in the audio recording domain, was placed at the location of BH3 close to the violins.

2.2 Results and discussion

Overall prediction accuracy for different number of instruments:

Figure 2.3: The variation of prediction accuracy of the number of violins played in the
ensemble.

The overall predictability of the number of instruments involved in musical en-
semble performance, averaged across all acoustic variations in the test is presented in
Figure 2.3. The results show that the listeners’ ability to predict the correct number
of violins diminishes with an increase in the number of violins played. A significant
drop in the prediction accuracy is observed after 2 violins, while only a little change
in accuracy is noted from three to six violins. Interestingly, a slight improvement in
accuracy is observed for the nine-violin condition compared to the three, four, and six-
violin scenarios. This observation could be attributed to the listeners’ prior knowledge
of the maximum number of violins involved in the test. Factors such as an increased
loudness impression compared to all the conditions could be one of the potential cues
that influenced a higher accuracy in nine violins, but further analysis is required to
identify the cues listeners utilized to differentiate the nine violin performance from
other conditions.
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To have a more detailed view of the predictability of violins, Figure 2.4 presents the
distribution of the predicted number of violins against the actual number of violins,
averaged across all acoustic variations. Consistent with the high prediction accuracy
observed in Figure 2.3, the distribution of the predicted number of violins converges
closely to the actual number of instruments for the one and two violin conditions,
with only a few outlier points. From four violins onwards, a high variation in the
prediction of the number of violins is observed among listeners. Particularly, a trend
of overestimation in the perceived number of violins is observed for four violins, with
an interquartile range (IQR) spanning from 4 to 6 and the upper whisker extending
to 9. Conversely, the distribution for the nine violins exhibits an IQR ranging from
6 to 9, with the lower whisker extending to 2. Given that the listeners were already
influenced by their prior knowledge of the maximum number of violins involved in
the test, the prediction of values above 9 would not be expected.

Figure 2.4: The distribution of the predicted number of violins corresponding to the
actual number of violins played.

These observations suggest that the identifiability of the number of sound sources
involved in a joint performance decreases with an increase in the number of con-
stituent sources. The inability to distinguish the constituent sources in a concurrent
sound is directly related to the impression of blending. Therefore, it is reasonable to an-
ticipate an increased blending impression for ensemble performance with an increase
in the number of sources. This observation aligns with the findings from [26], which
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analyzed the identifiability of the number of instruments in an ensemble performance
using different recording techniques. However, based on the individual prediction ac-
curacies and the distribution of the predicted number of violins, a possibility could be
hypothesized that the inability to predict the number of sources may not vary beyond
a specific number of violins, and reach a saturated level. In that case, there may not
necessarily be a significant enhancement in the contribution of additional sources to
the blending impressions when increasing the number of sources beyond this thresh-
old value. This phenomenon may be influenced by the acoustic environment-related
attributes, as well as the characteristics of the sound stimuli, that need to be explored
further.

The role of room acoustic attributes:

To better understand the role of room acoustic attributes in the prediction accuracy
of the number of sources involved in ensemble performance, this section individually
examines the overall variation in prediction accuracies across different room acoustic
conditions and seating locations utilized in the test. Figure 2.5(a) illustrates the varia-
tion of the actual and predicted number of violins across four room acoustic variations
involved in the test. Among the four conditions, the natural acoustic condition with S2
source distribution seems to possess relatively higher prediction accuracies for differ-
ent numbers of violins. In contrast, the condition featuring a higher reverberation of
3.2 s with S1 seating arrangement exhibits the relatively weaker prediction accuracy.
The decreased accuracy could be attributed to the increased reverberation time of the
acoustic environment, which is previously shown to influence blending [27], and/or
the seating arrangement of the instruments. It is observed that the participants over-
estimated the number of violins until six violins in the reverberant condition with 3.2 s
artificial reverberation. However, they could not discern the difference between six and
nine violins in this reverberant acoustic environment. This observation aligns with the
previously-mentioned threshold hypothesis, suggesting that after a certain number of
sources, no major changes in identification accuracy as well as the blending perception
can be observed while increasing the instruments in an ensemble.

Figure 2.5(b) illustrates the overall variation in the prediction of the number of vio-
lins across different seating locations in the Concert House during the first part of the
listening test. Out of the four predefined listener locations, the listeners in the far lo-
cation (D and E) are observed to have relatively lower prediction accuracies compared
to other locations. However, the trend is minimal, and not strong enough to draw con-
clusions. Unlike the earlier comparison on the room acoustic environment variation,
where each sample point had 16 independent ratings from 16 individual listeners, the
16 ratings for each sample in this comparison are from 4 listeners rated across the 4
room acoustic variations. Therefore, the chances of bias and errors due to the involved
listeners’ skill and ability can be high for each seating location.
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Figure 2.5: Variation in the prediction of number of violins with (a) different acoustic
environments, (b) different seating locations.

As a broader approach, the responses of 12 participants who performed the test in
both the direct sound field (i.e., within the critical distance from the source) and the dif-
fuse sound field (i.e., outside the critical distance from the source) during the two parts
of the listening test (the first part with listeners in the prescribed locations and the sec-
ond part with listeners at their preferred locations) under natural acoustic conditions
were taken for further analysis. The variation in prediction accuracies between the di-
rect and diffuse sound fields is illustrated in Figure 2.6 for different numbers of violins.
In general, the percentage of correctness is observed to drop with an increase in the
number of violins. A significant difference in the percentage of correct predictions is
noted between the direct and diffuse fields, particularly for the case of one violin where
it drops from 100% correctness in the near-field to around 60% in the diffuse field. The
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direct sound field generally holds a higher prediction accuracy in all conditions, except
for the case of six violins. For the direct sound field, the prediction accuracy dropped
from 100% to 20% with an increase in the number of sources from one to six violins, but
the accuracy was improved for nine violins. As previously mentioned, the increase in
sound pressure level along with more access to direct sound than the room reflections
could be a potential reason for judging the loudest condition having 9 violins. In con-
trast, for the diffuse sound field, the prediction accuracy dropped only from 60% to 30%
with an increase in the number of violins from one to four. The increase in accuracy
for nine violins is marginal in this condition, moreover, the four, six, and nine violins
have comparable prediction accuracy values. This confirms the saturation effect in the
prediction accuracy after reaching a threshold number of sources, where no significant
change in prediction accuracy is observed with an increase in the constituent sources
in the ensemble. The significant differences observed between the direct and diffuse
sound fields in terms of the prediction accuracies for different numbers of sources and
also the saturation trend, validate that the characteristics of room acoustic environ-
ment play a significant role in identifying the constituent instruments in an ensemble
sound, and thereby influence the impression of blending.

Figure 2.6: Variation of the prediction of number of violins in direct and diffuse sound
fields.
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Impression of Ensemble sound:

The percentage of agreement to the question ‘whether the performance sounds like an
ensemble or not’ is presented in Figure 2.7 by averaging across the acoustic variations
involved in the test. As expected, the percentage of agreement was zero in the case
of one violin. While the percentage of agreement increases with the increase in the
number of instruments from one instrument, it is observed to reach a plateau level at 4
violins after which no major improvement is found. This suggests an overall trend that
the joint musical performances tend to sound like an ensemble from around 4 violins
onwards. Although the percentage of agreement slightly increased for three violins
in reverberant conditions, this trend remained almost consistent across the different
acoustic variations utilized in the test, thereby aligning with the previous findings [26].

Figure 2.7: Agreement to the ensemble sound impression for different number of vio-
lins.

2.3 Summary

This pilot study investigated the blending of sound sources and the characterization
of ensemble sound using a live listening test conducted with musical ensemble perfor-
mance by analyzing the influence of room acoustic attributes in it. Additionally, exten-
sive recordings of the ensemble performance were collected using diverse recording
methods, which serve as material for the ensemble sound-related investigations of this
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thesis. These recordings will soon be open for scientific purposes in a public repos-
itory, and they can be utilized to explore ensemble sound research by analyzing the
role of musical and room acoustic aspects.

The findings from the listening test suggest that the listeners’ ability to predict
the number of constituent instruments involved in a joint performance of an ensem-
ble tends to diminish with the increase in the number of instruments involved. Since
the decreased identifiability of the constituent sound sources contributes to a better
sensation of blending, the blending can be expected to improve with an increase in
the number of sound sources. The acoustic variations utilized in the test by changing
the characteristics of the concert house using an artificial reverberation system and
changing the location of listeners appear to influence this phenomenon. Particularly
reverberant acoustic environment and a listener’s location in the diffuse sound field
are noted to have a lowered ability to predict the constituent sources, thereby poten-
tially enhancing the blending impression. In specific cases, a trend is noticed that the
ability to predict the number of violins diminishes after a specific number of violins
in the ensemble and reaches a saturated level. This trend is observed to be influenced
by the characteristics of the acoustic environment, with reverberant and diffuse room
acoustic conditions favoring this effect. In such a condition, there may not necessarily
be a significant enhancement in the contribution of additional sources to the blending
impressions when increasing the number of sources beyond a threshold value.

The listeners’ agreement on the impression of ensemble sound is observed to in-
crease with the number of sources in the joint performance to an extent, beyond which
no major change is observed. In the variations involved in the test, the condition with
four violins seems to show a high percentage of agreement of the ensemble sound
impression, which is closely comparable with the six and nine violin conditions. Addi-
tionally, the four violin condition also appears to be a transition point at which a high
variance was observed in the predicted number of instruments that is comparable to
conditions with six and nine violins.

Since the listener was aware that the maximum number of violins involved in the
ensemble was nine, it seemed to have caused a bias that restricted the interpretation of
the results to an extent. Therefore, the trend of saturation effect observed in the pre-
diction accuracy of violins needs to be evaluated with an improved test procedure or
by including more instruments. Furthermore, based on the previous research findings,
it can be stated that the way the musicians perform the same musical piece will not
be necessarily the same across the different room acoustic variations involved in the
test, due to the difference in room acoustic feedback. Therefore, it is acknowledged
that the source-level blending may also have changed across these room acoustic con-
ditions. While the influence of room acoustic variation on the musician’s performance
to achieve blending is an important and broad topic in the context of the musical en-
semble, it is beyond the scope of this thesis.
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Since the musicians in the string ensemble performance were asked to blend well
during the performance, they reported at the end of the test that they relied signifi-
cantly on the cues from the conductor as well as from the first violinist for synchronous
performance to achieve a blended impression. This pilot investigation only focussed
on the macroscopic perception of blending by evaluating the overall impression of
blending from a joint performance lasting a few minutes. Considering the feedback
from the room and co-performers, the degree of blending at the source level achieved
from their joint strategies might have an effect on these results. In other words, a poor
source-level blending achieved by the musician’s performance at some trials can have
a deteriorating effect on the final ratings, even if the room acoustic environment en-
hances it to some extent. Therefore, it requires a detailed analysis with a microscopic
perspective to examine the blending at the source level and its alteration by the room
acoustic environment separately, and thereby to have a better understanding of the
evolution of blending. Based on these insights gained from this study, the evaluation
of blending at the source level and the room acoustic level are analyzed in detail in the
upcoming chapters of this thesis.
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Chapter 3

Source level blending: development
of a classification model

Assessing the auditory perception of source-level blending between sound sources is
a crucial research topic within the fields of music perception and performance evalua-
tion, but remains poorly explored due to its complex andmultidimensional nature. Pre-
vious studies were able to estimate the source-level blending in musically constrained
sound samples such as notes or chords, but comprehensive modeling of blending per-
ception that involves musically realistic samples was beyond their scope. Combining
the methods of Music Information Retrieval (MIR) and Machine Learning (ML), this
chapter presents an investigation that attempts to classify sound samples from real
musical scenarios having different musical excerpts according to their overall source-
level blending impression. Rather than demanding access to acoustically clean individ-
ual source signals as done in earlier studies which poorly represent realistic musical
listening situations, this investigation is performed inmore realisticmusical settings by
utilizing in-situ recordings of monophonic, musically realistic, and score-independent
sound samples of two violins from unison performances. This offers a first step toward
the comprehensive modeling of the overall source-level blending impression. The con-
tent of this chapter is reproduced from the following research article with the permis-
sion of the Acta-Acoustica:

J. Thilakan, B.T. Balamurali, J.M. Chen, Malte Kob, "Classification of the perceptual
impression of source-level blending between violins in a joint performance," Acta Acustica
7, 62 (2023), https://doi.org/10.1051/aacus/2023050, (Licensed under a Creative Commons
Attribution (CC BY 4.0) license).
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3.1 Materials and methods

The overall block diagram of the investigated classification modelling is depicted in
Figure 3.1. Monophonic sound samples of two violins extracted from live ensemble
performances were perceptually evaluated in terms of the overall blending impres-
sion by a group of expert listeners, and subsequently labelled into ‘blended’ and ‘non-
blended’ classes. The preparation of sound samples, execution of the perceptual test,
and labelling are described in section 3.1.1. In contrast to the conventionally estab-
lished parameters that explained the blending in previous research which were only
accessible from the individual source channels (detailed in section 1.2.2), this study uti-
lizes theMel Frequency Cepstral Coefficients (MFCCs) extracted from the monophonic
sound samples as input features for the classification model. The process of extraction
of MFCC and its deployment in the study are described in section 3.1.2. Three com-
monly used feature transformation methods – Principal Component Analysis (PCA),
Linear Discriminant Analysis (LDA), and t-distributed Stochastic Neighbour Embed-
ding (t-SNE) are employed here to project the high-dimensional features into a lower
dimension by retaining the important information and avoiding redundancy.

Figure 3.1: Block diagram of the proposed classification model.

Audio samples were grouped into training and test sets for this blending classifi-
cation modelling process. The training data, which includes the pre-defined blended
and non-blended classes, and test data are then transformed using the chosen feature
transformation methods to a low-dimensional feature space, and the distance between
clusters is used as a parameter for the blending classification of the test sample. The
feature transformation techniques and modelling are explained in section 3.1.2.
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3.1.1 Preparation of sound samples

The clip-on microphone recording of the performance of a string ensemble consisting
of 9 violins presented in section 2.1.2 is utilized in this investigation for the prepa-
ration of sound samples. Due to the super-cardioid directivity characteristic of the
DPA clip-on microphones used in the recordings, the instrument recordings are ex-
pected to have minimal cross-talk from other instruments and room reflections [113].
These close-miking recordings are assumed to be authentic and intrinsic representa-
tives of realistic musical performances possessing minimal ambient noise and micro-
phone cross-talk, and hence they were utilized in this study to obtain sound samples
of joint performances.

From these recordings of the nine violins, 50 sound samples consisting of two violin
signals were extracted for evaluation. These samples had a duration of approximately
3 to 5 seconds each, and they included different musical fragments. The two violins in
each sample were randomly chosen from the 9 violin tracks, and hence the influence
of the coordination effect due to spatial proximity can be negligible in the selected
samples. The basis of the selection of these samples was that these samples should not
provide salient cues for distinguishing the two constituent violins such as pitch differ-
ence, onset timing asynchrony, etc., and significant noise level from bow & musician.
Nevertheless, these 50 samples are expected to differ in terms of blending impressions
due to the unavoidable differences in the musical attributes described in section 1.2.2.

The samples were extracted and post-processed in Reaper digital audio worksta-
tion; breathing and violin bow noises were minimized using a high pass filter with a
cutoff frequency of 200Hz without attenuating the low notes in the musical pieces.
Furthermore, fade-in and fade-out filters of less than 0.3 s duration were added at the
beginning and end of the signals. Subsequently, the two channels from the violins were
rendered by downmixing to a mono-aural sound sample with equal gains on each track
at 44.1kHz/16-bit depth, and these samples were used for the perceptual evaluation of
source-level blending.

Perceptual labelling of sound samples:
Fourteen musically ear-trained participants including Tonmeister students and profes-
sional musicians (4 female, 10 male, mean value of age 28.7 ± 7.2) participated in the
listening test. The participants had prior experience in critical listening, and previ-
ous studies have shown their sensitivity over non-musicians in selectively attending
to and analyzing the complex spectral and temporal features of sounds [17; 18]. So,
such a population is expected to better conceive the notion of blending and provide
the blending ratings with concordance.

The objective of the listening test and the test procedure were described to the par-
ticipants at the beginning of the test. As discussed in Section 1.2.2, blending can be
assessed using a rating scale or by evaluating the identifiability of constituent sound
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sources in a joint performance. Building on previous studies on statistical modeling of
source-level blending, this study used a 0–10 rating scale to assess perceived blending,
where lower values indicate poor blending and higher values indicate strong blending.
The working definition of blending was stated to the participants as “the perceived fu-
sion of violin sounds where the constituent instruments are indistinguishable". Since
the standard examples of the possible extrema of the blending impression between vi-
olins are not known, it was not possible to provide the reference samples for the train-
ing phase. This might have limited the listeners in conceiving the possible variation in
the blending impression in the chosen set of samples and forming their inner-scale of
blending rating. Nevertheless, to prime the listener with the sound of the instrument
in the DPAmicrophone recordings, familiarization audio examples consisting of sound
samples from the recording were provided at the beginning of the test.

Five audio files, each with 10 sound samples, were generated for the listening test.
The sound samples were randomized in the audio files in order to reduce the memory
retention effects in ratings. Each sound sample was played three times and the lis-
teners were asked to rate the blending impression of the particular sample on a scale
of 0 to 10 in a test response form. The participants performed the test using studio-
grade headphones of their choice in acoustically treated quiet environments. After
each audio file, participants had the option to take a short break and resume the test
which helped them to reduce mental fatigue. Including short breaks between each set
of audio samples, participants took an average of 30 minutes to complete the test.

Consistency and reliability of listening test rating: When looking at the listen-
ing test responses, some of the samples chosen for the study had a high variation in the
sample rating, indicating a high inter-participant disparity in the perceived blending
impression among the trained participants. This could be due to the different levels of
attention given to the musical aspects (e.g., pitch, timbre, onsets, etc.) by the partici-
pants while judging the sample. To tackle this problem, and to use sound samples with
a considerably consistent rating, a threshold value of standard deviation of 2 was cho-
sen in this study. Accordingly, sound samples with a standard deviation value smaller
than 2 were chosen for the classification evaluation which resulted in a final set of 31
sound samples from 50. The assessment of inter-rater reliability was performed to fur-
ther evaluate the degree of agreement between the listeners using Cronbach’s alpha
[117]. The Cronbach’s alpha value for the selected 31 sound samples was obtained to
be 0.93, indicating high reliability among the test participants on the rating of blending.

The probability distribution of the blending ratings of the short-listed 31 sound
samples is shown in Figure 3.2, which demonstrates a bi-modal distribution having
two maxima around 5.25 and 7.75 and a minimum around 6.5. Based on the bi-modal
distribution of blending perception ratings, two classes of samples were established -
the “blended class" that includes samples with a mean rating > 6.5/10, and the “non-
blended class" that includes samples with a mean rating < 6.5/10. Resulting in, the
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selected sample set having 13 samples from the blended class and 18 samples from the
non-blended class1.

Figure 3.2: Probability distribution of the blending ratings of 31 sound samples (the
thick black line shows the probability distribution function; the dashed red line indi-
cates the minimum arising between the two maxima in the distribution function.

3.1.2 Classification modelling
Feature extraction
The Mel Frequency Cepstral Coefficients based subjectively on a nearly logarithmic
sense of human auditory pitch perception [119] have been shown to successfully rep-
resent perceptually-related characteristics of signals [120]. Therefore, they have been
used widely in speech signal analysis including speech recognition [120; 121], speaker
identification [122], and verification [123]. Other studies further demonstrate their
relevance in music modeling [124], musical instrument recognition [125], and voice
and musical emotion detection [126; 127], thereby showing performance superior to
conventional audio features in MIR applications.

The process of extraction of MFCC features begins with converting the audio sig-
nals into frames using a moving time window and performing Discrete Fourier Trans-
formation (DFT) on each frame to get the power spectrum. A filter-bank derived from
the Mel scale is then applied to the power spectrum to obtain the Mel-scale power
spectrum. The logarithm of the amplitude spectrum is then taken. Finally, a Discrete
Cosine Transform (DCT) of the log filter-bank energies generates the Mel Frequency
Cepstral Coefficients.

1The selected sound samples are available at [118]
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Silent regions at the start and end of the audio samples were removed, and the first
14 MFCCs [128] were extracted for every 100ms of the audio signal with an overlap-
ping length of 50 ms using a Hamming window. Along with the raw MFCC features,
standardized (Z-score normalized)MFCC features were also computed for further anal-
ysis due to their applicability in similar related studies [129].

Feature transformation methods

The fundamental purpose of feature transformation using techniques adapted from di-
mensionality reduction is to project the higher-dimensional data into a lower dimen-
sional space yet retaining most of the relevant information and removing the redun-
dant or correlated information as well as the undesired noise. It helps in decreasing the
complexity of high-dimensional features and also supports in low-dimensional visual-
ization of the features. They have also been shown to improve the performance of the
statistical modeling method or machine learning algorithms [130; 131]. Depending on
the size, quality, and characteristics of input data (i.e., the feature set), different types
of feature transformation algorithms can be used for dimensionality reduction. They
can be classified into three main groups — linear vs. non-linear, supervised vs. unsu-
pervised, and random-projection vs. manifold-based [130]. The three feature transfor-
mation techniques used in this investigation are detailed below.

Principal Component Analysis (PCA): PCA is a widely used unsupervised and
linear dimensionality reduction method. It linearly projects higher-dimensional data
into Principal Components (PCs)whilemaximally preserving input data variance [132].
The principal components aremutually orthogonal and they represent directions of the
data that explain a maximal amount of variance.

Estimation of PCs starts by calculating the covariance matrix of the n-dimensional
(n=14 here) input data (X ). Next, the Eigenvalue decomposition is done on the covari-
ance matrix to estimate the Eigenvalues and Eigenvectors. A transformation matrix
(W n x k) made up of top k Eigenvectors is used to project X onto a lower-dimensional
feature space. The PC transformationminimizes redundancy, noise, and feature collinear-
ity. Non-linear feature extraction techniques outperform the PCA on artificial tasks
and can deal with complicated data structures, but studies suggest that they do not
outperform PCA in natural data sets [133]. Furthermore, PCA was shown to enhance
modeling accuracy and efficiency by transforming MFCCs [121; 125; 134].

LinearDiscriminantAnalysis (LDA): LDA is a supervised and linear feature trans-
formation technique that uses Fisher’s criterion – maximizing inter-class variance
while minimizing intra-class variation – resulting in minimal overlap of features cor-
responding to different classes (maximum class separation) in new dimensional trans-
formed space [135].
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To derive low-dimensional features, two scattering matrices are estimated for the
predefined classes – (1) within the class scattering matrix (Swc), and (2) between the
class scattering matrix (Sbc). The Eigenvalue decomposition is done on the matrix
Swc-1.Sbc to derive the Eigenvalues and Eigenvectors. Eigenvectors corresponding to
the highest Eigenvalues in the new feature space maximize class separation in the
transformed space. Similar to the PCA, a transformation matrix W with the top k
Eigenvectors is constructed, which transforms the input data X onto a lower dimen-
sion. Unlike PCA, the features in the low dimensional basis are not necessarily orthog-
onal in LDA [135; 136].

t-StochasticNeighbourhoodEmbedding (t-SNE): t-SNE is an unsupervised, non-
linear feature transformation that can capture most of the necessary local structure
information from a high-dimensional feature space while simultaneously revealing
information about the global distribution of the data [137]. The dimensionality re-
duction of t-SNE is performed similarly to the Stochastic Neighbourhood Embedding
(SNE) in which the distance measures between data points in high dimensions are con-
verted into conditional probabilities. A symmetrized cost function based on ‘student
t-distribution’ is implemented in t-SNE which improves the optimization and crowd-
ing problems of SNE [137]. The non-linearly extracted probability values refer to the
similarity between all the pairs of data points. Afterward, this process is performed
for all the pairs of data points in lower dimensional feature space (which is normally
2 or 3 for visualization purposes), and the probability values are extracted. Finally, the
embedding of the high dimensional data to a lower dimensional feature space is per-
formed by minimizing the difference between probabilities using the optimization of
Kullback–Leibler divergence [137; 130]. Euclidean distance was used in this method
for the similarity estimation between data points.

Test-train split up and classification criteria

Due to the limited sample size available in our study, implementation of advanced
machine learning modelling algorithms like Deep Neural Networks has limitations.
Comparison of similarity using distance measures between clusters is a conventional
method in statistical modelling [138; 139], and a similar technique is used in this in-
vestigation. The first phase of the modelling process started with randomly dividing
the samples into training and testing data sets; this investigation included 23 train-
ing and 8 test samples, respectively. The training data included 10 samples from the
blended class and 13 samples from the non-blended class, and the test data included
3 samples from the blended class and 5 from the non-blended class. The transforma-
tion of the training data (including pre-defined blended and non-blended classes) and
test data to a low-dimensional feature space is performed using the proposed feature
transformation methods.
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The centroid of the data distribution–the Euclidean coordinate which corresponds
to the arithmetic mean of data points across the dimensionality-reduced feature space–
is estimated for the blended class, non-blended class, and test data. The Euclidean
distance between the centroids of these blended, non-blended classes and the testing
audio sample in the low-dimensional feature space was used as the metric for the clas-
sification of blending impression. In our classification criteria, if the Euclidean distance
between the centroid of the blended class and test data is less than the distance between
the centroid of the non-blended class and test data, then the test sample is classified as
‘blended’, and vice versa. For each test sample, the predicted class from the model was
compared with its perceptually labelled class. Accordingly, the performance of each
feature transformation technique is estimated.

The results of this evaluation could be biased due to the chosen samples in the
training and testing data sets and the limited sample size. To overcome this issue of bias
and the possible randomness in the result, the accuracy of the best-performing feature
transformation models when evaluated using a distinct training and test set is further
validated using Leave-One-Out Cross-Validation (LOOCV). LOOCV involves training
the model with all of the data except for one data point, for which a prediction is made
[140]. A total of 31 unique models must be trained using 31 data samples; while this is
a computationally expensive strategy, it ensures an accurate and unbiased measure of
model performance.

3.2 Results
3.2.1 Statistical Analysis of Transformed Features
The hypothesis that the distribution of two classes (blended and non-blended) in trans-
formed features have equal mean values (null hypothesis) or not was tested using the
Mann-Whitney U test [141]. Transformed features corresponding to all 31 samples (13
blended and 18 non-blended) were considered for this analysis. In PCA and LDA, the
transformation that preserves maximum data variance (95% in this investigation) was
considered. This has resulted in four transformed features for raw MFCC and nine
transformed features for standardized MFCC for PCA transformation, and one trans-
formed feature for both raw and standardized MFCCs for LDA transformation. For
t-SNE, the default transformed dimension of three was used for both raw and stan-
dardized MFCCs.

PCA feature analysis: TheMann-WhitneyU test was performed on the PCA- trans-
formed raw and standardized MFCC features, and the results are shown in Table 3.1.
Additionally, the box plot and probability density function of the two classes corre-
sponding to each feature shown in Figures 3.3 and 3.4 describe the distribution of PCA-
transformed features. Since the distributions of PC7 to PC9 are very similar to those
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of PC6, they were omitted from Figure 3.4.

Figure 3.3: Distribution of PCA-transformed raw MFCC.

Figure 3.4: Distribution of PCA-transformed standardized MFCC.

For Mann-Whitney U test results comparing two transformed feature sets (see Ta-
ble 3.1), all p-values (with the exception of PC4) are less than 0.05, rejecting the null
hypothesis that there is no difference between the mean values of PC1, PC2, and PC3
corresponding to the PCA transformed MFCC features of blended and non-blended
samples. The exception (p-value > 0.05) for the standardized MFCC was PC7.

LDA feature analysis: Mann-Whitney U test result of LDA transformed raw and
standardized MFCCs is shown in Table 3.2 and their distributions are depicted in Fig-
ure 3.5 (a) and (b), respectively. The p-value of the transformed features corresponding
to blended and non-blended samples are less than 0.05, implying that the null hypoth-
esis of equal means is rejected once again. The distribution plots of raw and standard-
ized MFCCs clearly demonstrate the differences between the two classes of data and
validate the Mann-Whitney U test findings.
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Input feature Feature p-value

Raw
MFCC

PC1 <0.001
PC2 0.002
PC3 0.138
PC4 0.863

Standardized
MFCC

PC 1,2,3,4,5,6,8,9 <0.001
PC7 0.421

Table 3.1: Mann-Whitney U test summary of the PCA features.

Figure 3.5: Distribution of LDA-transformed (a) raw MFCC, (b) standardized MFCC.

Input feature Feature p-value
Raw MFCC Feature 1 <0.001

Standardized MFCC Feature 2 <0.001

Table 3.2: Mann-Whitney U test result summary of the LDA features.

t-SNE feature analysis: The Mann-Whitney U test findings for t-SNE transformed
raw and standardized MFCCs are shown in Table 3.3, and their respective distributions
are illustrated in Figures 3.6 and 3.7. The p-value is significant for the second and third
t-SNE transformed rawMFCC features, however, the first t-SNE transformed feature is
significant for standardized MFCC. Furthermore, the distribution of t-SNE differs from
that of PCA and LDA, where notable bimodal characteristics can be detected in the
former.

3.2.2 Cluster visualization of PCA, LDA, and t-SNE
Figure 3.8 shows the cluster distribution of transformed rawMFCC features for blended
and non-blended samples. This helps in visualizing the transformation in lower dimen-
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Figure 3.6: Distribution of t-SNE transformed raw MFCC.

Figure 3.7: Distribution of t-SNE transformed standardized MFCC.

Input feature Feature p-value

Raw MFCC
Feature 1 0.135
Feature 2 <0.001
Feature 3 <0.001

Standardized MFCC
Feature 1 <0.001
Feature 2 0.507
Feature 3 0.107

Table 3.3: Mann-Whitney U test result summary of the t-SNE features.

sional space, and the first three transformed features of MFCC were compared across
the three transformation techniques. The blended audio features transformed from the
training set are represented by red dots, while the non-blended features are represented
by green dots. The centroids of blended and non-blended training data distributions
are highlighted using red and green spheres. Furthermore, the centroids of the trans-
formed blended audio samples from the test data are shown as red triangles, while that
of the non-blended samples are shown as green triangles (See Figure 3.8 (a) and (b)).
Because the t-SNE transformation matrix is dependent on the test data, the resulting
centroid of a non-blended sample (selected as an example) is shown in Figure 3.8 (c).

Since the overall blending rating is considered in this investigation rather than
the time-varying blending parameter, the two classes in training data may overlap,
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Chapter 3. Source level blending: development of a classification model

Figure 3.8: Cluster distribution of transformed raw MFCC features for blended and
non-blended samples using (a) PCA, (b) LDA, (c) t-SNE. Spheres indicate centroids of
blend (red) non-blend (green) training data, while triangles indicate centroids of blend
(red) and non-blend (green) test data.
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which means that the non-blended sound sample may contain many data points with
blended characteristics and vice versa. Looking closely at Figures 3.8 (a), (b), and (c),
the class overlap in PCA, t-SNE, and LDA is visible, though slightly less overlap in
the latter. This less overlap could be attributed to the supervised nature of the LDA
transformation, which could eventually aid in class identification.

3.2.3 Classification Model Result

With Separate Train-Test Samples

Table 3.4 shows the performance of various models for blended-non-blended classifica-
tion when the model is trained using a fixed training sample set (23 samples) and tested
against the remaining eight samples. The table clearly shows that the raw MFCC con-
sistently outperforms the standardized MFCC, which is surprising and contradictory
to many previous results on audio classification [142; 143].

Among the six classification models, the transformation of raw MFCC using LDA
and subsequent similarity estimation produced the highest accuracy (87.5%). The LDA-
supervised transformation, which results in less overlap between the two classes (see
feature distribution in Figure 3.5), could be responsible for this superior performance.
PCA and t-SNE transformations of raw MFCCs were relatively worse (75%) as com-
pared to LDA. All the remaining models have resulted in the same accuracy (62.5%).
Figure 3.9 shows the resulting confusion matrices for these models. When using raw
MFCC for transformation, LDAmisclassified one of the blended signals as non-blended
(see Figure 3.9 c). PCA and t-SNE transformation has an additional non-blended mis-
classification. The remaining models perform poorly and consistently misclassify the
blended signals as non-blended.

Transformation method Input data Accuracy
PCA Raw MFCC 6/8 (75%)
PCA Standardized MFCC 5/8 (62.5%)
LDA Raw MFCC 7/8 (87.5%)
LDA Standardized MFCC 5/8 (62.5%)
t-SNE Raw MFCC 6/8 (75%)
t-SNE Standardized MFCC 5/8 (62.5%)

Table 3.4: Performance of PCA, LDA and t-SNE transformation models trained and
validated using separate train and test samples.

To confirm that the technique selected for feature transformation and classification
is free of bias and to assess the likelihood of possible overestimation of accuracy with
selected samples from the testing set, a leave-one-out cross-validation technique was
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Figure 3.9: Confusion matrices depicting the correct and misclassification rates of the
six transformation models trained and validated using separate train and test samples,
(number of test samples n=8; B and NB represent Blended and Non-Blended classes).

finally carried out in this investigation. Although the t-SNE transformation of MFCC
exhibits a comparable result to PCA, it can’t be considered to be a generalized solu-
tion since the t-SNE transformation is test data-dependent [137]. Further, t-SNE was
employed in this study for the completeness of the dimensionality reduction method
due to its ability to visualise more sophisticated higher-dimensional clustering of data
using a non-linear approach. Hence, the investigation using LOOCV is limited to the
top-performing models from this analysis, i.e., PCA and LDA transformation of raw
MFCC. The results of LOOCV are discussed in the following section.

Cross validation of the model

In LOOCV, the model is trained using all of the samples except for one sample, for
which a prediction is then made. Table 3.5 shows the performance of PCA, and LDA
transformation models validated using LOOCV, and Figure 3.10 shows the Confusion
matrices depicting correct and misclassification rates in LOOCV (models were trained
and validated with 31 separate iterations).

LOOCV result is comparable to the earlier result (i.e., from a distinct train-test
split). A prediction accuracy of 87.1% for MFCC features transformed using LDA was
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achieved with 27 correct classifications out of 31. There are two misclassifications
for both the blended and the non-blended classes. The PCA-transformed MFCC per-
formed marginally worse with 22 correct classifications out of 31. In PCA transformed
features, the blended classes misclassified as non-blended are higher than the LDA
equivalent (5 out of 13 in PCA compared to 2 out of 13 in LDA). So overall following
the result based on the given set of samples, this investigation demonstrates that the
MFCC features transformed using Linear Discriminant Analysis are a suitable method
for classifying musical score-independent, monophonically rendered dynamic musical
signals in terms of their overall perception of the source-level blending impression.

Figure 3.10: Confusionmatrices depicting correct andmisclassification rates in LOOCV
(models were trained and validated with 31 separate iterations; B and NB represent
Blended and Non-Blended classes).

Transformation method Input data Accuracy
PCA Raw MFCC 22/31 (70.9%)
LDA Raw MFCC 27/31 (87.1%)

Table 3.5: Performance of PCA and LDA transformation models validated using
LOOCV.

3.3 Discussion

This study used a computational approach to classify monophonic recordings of uni-
son performances by two violins into blended or non-blended classes based on their
overall impression of source-level blending, while the two latter classes were perceptu-
ally validated through a listening experiment with expert listeners. The classification

57



Chapter 3. Source level blending: development of a classification model

accuracy reached up to 87%, indicating a promising method that considered realis-
tic sound samples with different musical content without accessing individual source
recordings. Our study shows that a computational approach can model certain as-
pects of complex psychoacoustic phenomena such as musical blending, and thus in-
troduces a new tactic to address a stubborn and difficult auditory puzzle. In this regard,
this study differs from earlier studies on understanding and assessing blending in that
it directly incorporated “ecologically” realistic sound samples containing musical ex-
cerpts representing diverse musical contents, and was not restricted only to musical
notes or chords [14; 33; 30]. Given that this ecologically representative approach has
never been attempted before, it increases the novelty and impact of this study. More-
over, this investigation advances the state-of-the-art by incorporating methods from
the disciplines of Music Information Retrieval (MIR) and Machine Learning in this mu-
sic perception-related research problem.

Unfortunately, a direct comparison of this study with earlier investigations that
treated blending as a continuous variable is not possible since this study performed
the binary classification of sound samples into blended and non-blended classes. Fur-
ther, while rating sound samples that contained musical excerpts, only a single-valued
rating that represents the ‘overall’ impression of blending was given for each sample,
which was not finely resolved in time. Hence, it is acknowledged that this subjective
rating may not always be useful in explaining the temporally continuous variation of
musical attributes in other contexts (e.g. a short performance mistake that occurred
for 100 ms in a highly blended sample may have a stronger effect on its final overall
impression of the blend for the whole sample). Nevertheless, we observed the bi-modal
probability distribution of sample ratings (see Figure 3.2), therefore the naive classifi-
cation of the samples into two categories is not unreasonable.

The notion and perception of musical blending can differ across individuals from
a heterogeneous background, thus this feasibility study was performed ‘only’ among
musically ear-trained critical listeners (who are expected to be sensitive and perceptive
to audio cues and hence offer good convergence in terms of the musical agreement),
and thereby expected to reduce variance and inconsistencies in perceptual labeling.
Additionally, in contrast to previous studies which employed instrument recordings
from sophisticated recording conditions [33; 30], this study utilized in-situ recordings
of an ensemble performance from a concert hall which was carried out by intentionally
not restricting the natural environment of the musicians and the auditory and visual
feedback from the performers and acoustic space, and thus represents an “ecological”
musical and listening context. Therefore, unlike the necessity of having ‘acoustically
clean’ signals, this study made use of authentic and natural representative sound sam-
ples of joint musical performance having natural ambient noise and negligible micro-
phone crosstalk – this increased representativeness of natural musical performance
thus broadens the relevance when studying other in-situ joint musical performances.
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Although MFCCs are widely used in Music Information Retrieval (MIR) to de-
scribe spectral and timbre information [144], it is noted that the coefficients alone
offer limited insight into music perception [145] and by extension, limited utility to
explain blending impression in terms of temporal, spectral, and energy-based musical
attributes. In this approach, we did not incorporate certain prominent feature param-
eters from time and frequency domains that were explored in earlier blending studies
[14; 33; 30] such as pitch, spectral centroid, attack contrast, and loudness correlation,
etc. The reason for not using them in this approach is that our study focuses on mono-
phonically rendered audio samples, while those parameters were specifically designed
for individual source channels. Since this work is limited to MFCC features, alterna-
tive MIR features would be studied and included in future studies for modelling the
blending perception.

The bias or chance predictions arising from the proposed classification model have
also been checked by performing a two-fold evaluation (test-train split up, and cross-
validation). Having developed the blending classification model, we now have a tool
that allows future work to focus on the estimation of blending impressions of dynamic
music samples using large and diverse datasets (that includes samples having differ-
ent numbers and combinations of instruments, or samples manipulated to explore au-
dio features like pitch, spectral centroid, onset time, loudness, etc.,) and also further
extending the modelling to machine learning models such as decision trees, Support
Vector Machines (SVM), Neural Networks, etc. The final goal would be to finally com-
prehensively assess the blending of sound sources as a time-varying parameter by also
incorporating room acoustic contribution.

3.4 Summary

This investigation demonstrates the feasibility of classifying musically realistic sound
samples based on their overall blending impression perceived between two musical in-
struments in a unison performance. Musical score-independent monophonically ren-
dered sound samples extracted from in-situ recordings of an ensemble performance
were used for the perceptual evaluation of blending impressions and the correspond-
ing classification modelling. The results show that the Linear Discriminant Analysis
paired with the Euclidean distance measure performed on the raw MFCC features ex-
tracted from the sound samples is an effective method of classifying these sound sam-
ples into blended and non-blended classes. The model was tested and verified using
a separate train-test data set, and leave-one-out cross-validation which showed an ac-
curacy of 87.5%, and 87.1% respectively. This outperforms the other models tested in
this study which were developed using the PCA and t-SNE transformations of raw
and standardized MFCC features. Unlike the previous research on the estimation of
source-level blending impression which employed musically constrained sound sam-
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ples (such as notes or chords) of instruments from sophisticated recording conditions,
this study surpasses earlier limitations by implementing the classification of ‘ecologi-
cal’ sound samples of joint performances even without accessing the individual source
recordings.

This investigation serves as a proof of concept for the capability of feature trans-
formations to categorize the perception of multivariate psychoacoustic blending phe-
nomenon, despite the fact that the perceptual rating scale is subjective and may vary
depending on the listeners’ backgrounds and the characteristics of the audio samples.
The proposedmethod could be further expanded using a larger sample size and applied
in various domains such as joint musical performance training, and real and virtual or-
chestral sound evaluation because it is independent of the musical content of the signal
and does not require access to the individual source signals. Given that the method is
applicable for sound signals from joint performance recording with minimal micro-
phone cross-talk and background noise, this expands its utility in in-situ applications.
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Chapter 4

Quality assessment of auralization of
ensemble sound

An accurate representation of individual sound sources is required to achieve a percep-
tually convincing auralization of joint musical performances. Therefore, it is essential
to capture clean signals of each musical instrument in the joint performance with min-
imized microphone cross-talk and room acoustic feedback for this purpose. Recording
instruments in anechoic environments is a widely used method, but it typically lacks
the natural and intrinsic characteristics of a joint performance due to limited room
acoustic and inter-musician feedback. An alternative to this is to use close miking
techniques to capture individual sound sources in a joint performance. Although these
recordings have the potential to capture authentic attributes of joint performance, the
challenge here is to improve the quality of recordings by minimizing the microphone
cross-talk and room acoustic contribution in reverberant environments. This study
investigates the perceptual quality of auralization of an ensemble using clip-on mi-
crophone recordings in comparison to a binaural recording of musical performance.
The content of this chapter is reproduced from the following research article with the
permission of the Acoustical Society of America:

J. Thilakan, O. C. Gomez, E. Mommertz, M. Kob, “Pilot study on the perceptual qual-
ity of close-mic recordings in auralization of a string ensemble”, Proceedings of Meetings
on Acoustics, vol. 49, Acoustical Society of America, (2023), https://doi.org/10.1121/2.
0001686.
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Chapter 4. Quality assessment of auralization of ensemble sound

4.1 Materials and Methods

4.1.1 Preparation of sound samples

The close-microphone recordings of an in-situ performance of a string ensemble with
a different number of violins ranging from 1, 2, 3, 4, 6, and 9 was utilized in this investi-
gation (from chapter 2). The ensemble performance and its recording was conducted at
Detmold Concert House (the details of the performance and the recording techniques
are presented in the section 2.1), and the ensemble recordings with natural acoustic
conditions of the concert house (T30= 1.6 s) were utilized in this investigation.

DPA 4099 clip-on microphones were used to capture individual source signals by
attaching them to the instrument and placing them close to the bridge of it. These
microphones have a frequency response of 20Hz – 20 kHz with an effective frequency
range of 80Hz–15 kHz (± 2 dB) at 20 cm distance, and possess a super-cardioid direc-
tivity [113]. Due to this directivity characteristic, the contribution of the room acoustic
reflections was minor in the recordings. However, in a pilot listening test, the record-
ings are reported to have a non-trivial amount of cross-talk between the sound sources.
Head Acoustics HSU III.2 binaural head having head-shoulder unit and ICP measure-
ment microphones (±2 dB for 3.5 Hz – 20 kHz) [115], placed in the far-field of the
concert house was used to capture the sound field of the musical performance, and
thereby serve as the reference. The seating arrangement of the instrument and the
position of the head for this specific investigation is as shown Figure 4.1.

The musicians in the ensemble were separated by roughly 80 cm to 1 meter of
seating distance, and equal gain was applied for all the DPA microphone tracks in the
sound card. Due to the relatively adjacent position of the DPAmicrophones, the major
issues that deteriorated the quality of the clip-on mic recordings were the breathing
noise of the musician, noise from bowing & tapping on the fingerboard, etc. To re-
duce the noisy components due to breathing, etc., a smooth high-pass filter centered
at 200Hz was applied to the DPA recordings using REAPER digital audio workstation.
For later direct comparisons with auralized signals, the same filter was applied to the
binaural recordings to avoid spectral dissimilarity. Two different musical fragments
with fixed melodies having a length of 5-6 seconds were extracted for different num-
bers of violins from the DPA microphone signals and their corresponding Binaural
recordings to serve as two independent observations. The musical fragment with the
lowest noise level in the recording among the multiple repetitions of the performance
in each condition was chosen for the extraction.

Using good quality close mic recordings of individual sources, the sound field of
the joint musical performance was reconstructed by convolving them with the Binau-
ral Room Impulse Responses (BRIRs) of each source estimated from two independent
methods; (1) in-situmeasurements conducted at the concert house using a loudspeaker,
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Figure 4.1: Position and orientation of violins and the binaural head (denoted as BH in
the figure) in the concert house.

(2) a room acoustic simulation of the concert house. Employing a loudspeaker (typi-
cally a studio monitor with flat frequency response) to measure BRIRs has limitations
due to its difference in the directivity with the musical instrument which would lead
to the difference in the spatial distribution of the radiated energy. However, similar
methods have been followed in earlier studies to have an approximate representation
of sound sources like violin using a simplified loudspeaker setup in concert halls [70].
Implementation of GA-based room acoustic simulation, which employs a lower com-
putational effort in comparison with a wave-based acoustic simulation is another well-
used alternative to re-create acoustic environments. The GA-based room acoustic sim-
ulations have limitations in dealing with complex wave phenomena and are observed
to have perceptual differences from actual rooms, but they also have benefits like the
ability to estimate Spatial Room Impulse Responses (SRIRs) for sources with specific
directivities, ease of changing the acoustic properties of materials, absence of back-
ground noise and distortion, etc [146]. The process of estimation of BRIRs using these
two independent methods for auralization is described in the following section.

Measurement of BRIR from the concert house:

A set of acoustic transfer function measurements was carried out in the concert house
using Neumann KH120 A, a commonly used studio monitor speaker, and the HSU
III.2 binaural head to obtain the individual BRIRs for each source-to-receiver position.
KH120A loudspeaker consists of a 5.25” woofer and 1” tweeter with a frequency re-
sponse of ± 3 dB for 52Hz–21 kHz, and it exhibited a directional characteristic similar
to a trumpet[147]. The loudspeaker was held at a height of 1 metre, and oriented to-
wards the front side of the musician’s orientations. An exponential sine sweep signal
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(fs = 44100, number of samples = 65536) averaged with three repetitions was used to
measure the transfer function of each channel of binaural recording. The BRIRs ob-
tained for each individual sound source were convolved with the DPA recordings to
produce auralized sound samples. The recorded samples were extracted from a musi-
cal composition without a reverberation tail using a smooth fade-out filter. Therefore,
following the same procedure, the reverberation tail of the convolved samples was also
removed using a fade-out filter for direct comparisons.

Estimation of BRIR from the simulation of concert house:

This study utilized ODEON version 17, a commercially used GA-based room acoustic
simulation software, to generate virtual room acoustic environments. Since ODEON
incorporates state-of-the-art room acoustic simulation techniques (detailed in section
1.2.4) and yields reliable results, it has been employed in many auditory perception-
related investigations for simulating acoustic environments [68; 99; 100]. A geomet-
rical room acoustic simulation model (GA model) of the Detmold concert house was
created and developed in ODEON version 17, and the scattering and absorption co-
efficients of the materials used in the concert house were chosen within their typical
range of physically valid values in the simulation. The picture of the Detmold concert
house from the listeners’ area and its corresponding view in the GA model in ODEON
are given in Figure 4.2.

Figure 4.2: (a) Picture of Detmold Concert House from the listeners’ position on the
left, (b) Corresponding view in the GA model in ODEON.

To start with the optimization of the GA model of the concert house, the impulse
response of the hall for an omnidirectional loudspeaker on stage and an omnidirec-
tional microphone at the location of the binaural head (as shown in Figure 4.2a) was
measured, and important acoustic parameters, such as Early Decay Time (EDT), Re-
verberation time (T30), and Clarity index (C80) were estimated (described in Appendix
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A) from the measured impulse response. Subsequently, the room acoustic parameters
from the ODEON simulation of the concert hall were obtained for the same source-
receiver positions and compared with the measured values. Similar to procedures fol-
lowed in earlier studies on the reconstruction of acoustic environments [23; 19], the GA
model was further optimized by modifying the absorption and scattering coefficients
of the materials within the physically reasonable range in order to achieve similarity
in measured and simulated IRs by bringing EDT, T30, and C80 parameters closer to the
measured values. The room acoustic parameters estimated from the RIR measurement
and optimized simulation for different frequency bands are provided in Table 4.1.

Parameter RIR source 250 Hz 500 Hz 1000 Hz 2000 Hz

EDT (s) Measurement 1.24 1.37 1.63 1.49
Simulation 1.23 1.35 1.65 1.44

T30 (s)
Measurement 1.57 1.59 1.65 1.56
Simulation 1.29 1.36 1.62 1.39

C80 (s)
Measurement 2.32 0.34 -1.24 2.54
Simulation 1.80 0.5 -1.5 -0.3

Table 4.1: Room acoustic parameters estimated from measured and simulated RIRs for
different frequency bands.

The Just Noticeable Difference (JND) values of these parameters show the least
difference in the parameter value that a human ear can detect. According to the ISO
standards with frequency averaging across 500-1000 Hz octave bands [37], the Early
Decay Time (EDT), which better reflects the perception of reverberation, estimated
from the simulation (1.50 s) is in good agreement with the measurement (1.50 s± 0.07 s
JND). Similarly, the C80 value of the simulation (-0.90 dB) is within the JND of mea-
surement (-1.00 dB ± 1 dB JND). The T30 value estimated from the simulation (1.49 s)
is marginally different from the measurement (1.62 s ± 0.08 s JND) with an 8% devia-
tion compared to the 5% JND level. This optimized GA model having a considerable
degree of similarity with the measured room acoustic parameters was finalized and
taken further for the auralization of the ensemble.

Sound sources were placed in the ODEON model according to the location of mu-
sicians during the performance of recordings, and an inbuilt directivity of violin which
is averaged over 1/3rd octave bands with spatial resolution of 5° was applied on each
source. The SRIRs from each sound source to the pre-defined location of the binaural
head was obtained as third order (16 channel) ambisonics file. To auralize sound sam-
ples with different number of sources, the individual DPA recordings of each source
were convolved with its corresponding SRIR obtained from ODEON using the MCFX
convolver plug-in in the REAPER digital audio workstation. The gain of each source
was adjusted according to the attenuation factors obtained fromODEON. The HRTF of
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the HMS II binaural head from Head Acoustics which has the same geometrical shape
of HSU III.2 that is designed in conformity to ANSI S3.36 was used for transforming
the 3D audio file into the binaural format, and it was performed using SPARTA Am-
biBIN plugin [148]. After rendering the samples, the reverberation tail at the end of
the sample was cropped out using a fade-out filter as followed in the earlier cases.

4.1.2 Perceptual evaluation of sound samples
A group of thirteen ear-trained expert listeners that included tonmeister students and
musicians participated in the listening test. All of them had a background in musical
and technical ear training and they were very accustomed to the sound of the string
ensemble. With a background in music and experience in critical listening, they are
expected to be more capable and sensitive in selectively scrutinizing and evaluating
the complex spectral and temporal features of sounds than non-musicians [17; 18].
The objective of the study and the characteristics of sound samples were not disclosed
to them at the beginning of the test to prevent pre-judgmental biases. A familiarization
audio file of the binaural recording of the string ensemble performance was provided
at the start of the test to make the listeners familiar with the binaural head recordings.
Then, a dedicated Graphical User Interface designed using MATLAB’s app designer as
shown in Figure 4.3 was used to perform the listening test.

The application consisted of 24 trials with a pair of sound samples in each (6 source
combinations × 2 musical stimuli × 2 synthesized methods), and the order of pairs
of sound samples was randomized according to the number of violins and the musi-
cal stimulus to minimize the direct comparison due to retaining memory of listening.
Each trial consisted of two types of sound samples: one binaurally recorded sample
(abbreviated in this study as “Rec”), and the corresponding synthesized counterpart
which is auralized using either a direct convolution with measured BRIRs (referred to
as convolved sample and abbreviated as “Conv”) or the BRIRs obtained from GA
simulation (referred to as simulated sample and abbreviated as “Sim”). These two
kinds of samples (recorded and synthesized) were randomly assigned to samples A and
B in the GUI of the application.

The participants were asked to rate two aspects of sound samples in each trial:
firstly, to rate the naturalness (realism) of each sound sample on a scale of 0 to 10,
and secondly to rate the degree of similarity between the two samples on a scale of
0 to 10. A higher value rating on the scale referred to a very natural/highly similar
impression. The listeners had an opportunity to perform the test remotely, and the
listeners were permitted to play back the samples multiple times as they desired. The
test was performed using Beyerdynamic DT 770 Pro headphones in an acoustically
treated room, and it took an average of 15 minutes to complete the test. Finally, a short
discussion with each participant was conducted to review the perceived characteristics
of the sound samples.
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Figure 4.3: Graphical user interface of the listening test application.

4.2 Results and Discussion

4.2.1 Assessment of naturalness of sound samples

The distribution of naturalness ratings of the recorded and convolved sound samples
for different numbers of violins is provided in Figure 4.4. Since the assessments of sam-
ples having two different musical stimuli were regarded as individual observations in
the test, each box plot in Figure 4.4 includes 26 observations (13 participants × 2 stim-
uli). The results show a trend that the binaural recordings are not always rated to be
highly natural in comparison to the convolved samples, and their naturalness ratings
decreases as the number of violins increases as reflected by a reducing median value
and a shift in the interquartile range (IQR) toward lower ratings. Moreover, in most
conditions, recorded and convolved samples exhibit a relatively comparable distribu-
tion in naturalness ratings, as indicated by the close median values and overlapping
IQRs. Mann-Whitney U test [141] was conducted to compare the statistical differences
in naturalness distributions between real recordings and convolved samples for differ-
ent numbers of violins. As discussed in chapter 3, this non-parametric alternative to
Student’s t-test was chosen due to violations of normality in the distributions, as con-
firmed by the Shapiro-Wilk test [149] The test results show that while the recorded
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Figure 4.4: Distribution of naturalness ratings between recorded and convolved audio
samples.

and convolved samples exhibit a statistically significant difference in their distribu-
tions for 1-violin condition (p<0.001), no statistical evidence was found to conclude
that the pairs of distributions differ significantly in the other five conditions (2, 3, 4, 6,
and 9 violins) at the 5% significance level. While this result does not confirm that the
pairs of distributions are similar, the lack of strong statistical evidence for a difference
supports the argument that close microphone recordings can be capable enough to de-
liver a perceptually convincing and natural auralization of joint musical performance
in comparison with a real binaural recording.

Figure 4.5 shows the distribution of naturalness ratings for the recorded and sim-
ulated sound samples for different numbers of violins (26 observations in each box
plot). Corresponding to the preceding observation, the naturalness of the recorded
sound samples is observed to decline with an increase in the number of violins as re-
flected by a reducing median value and a shift in the interquartile range (IQR) toward
lower ratings. This indicates the deficiency of the incorporated binaural recording and
reproduction techniques in the re-synthesis of a relatively complex sound field with
perceptually convincing authenticity and realism.

When comparing the recorded and simulated sound samples, the distribution of
naturalness ratings of simulated samples is shown to be significantly different from
that of the recorded samples across the 6 conditions, as shown in Figure 4.5. The
distinction between recorded and simulated samples is observed to diminish with an
increase in the number of violins. However, The Mann-Whitney U test conducted
on the pairs of distributions of naturalness ratings for recorded and simulated sam-
ples suggests a statistically significant difference between the pairs of distributions
in all six conditions at the 5% significance level. This reveals the limitation of simu-
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Figure 4.5: Distribution of naturalness ratings between recorded and simulated audio
samples.

lated samples in conveying a perceptuall natural impression in comparison to the real
recordings. The dominance of high-frequency components in the simulation outputs
is reported in earlier studies on the reconstruction of sound fields using GA room sim-
ulations, along with a proposal for implementation of a filter to adjust for it [19]. This
could be a potential reason for the degraded naturalness impression of the auralized
sound samples. Additionally, test participants reported that some of the sound samples
of joint performance were significantly distinguishable due to timbre difference, low
spatial envelopment, and narrow apparent source width, which could account for the
trend of lower naturalness impressions with simulated samples.

1 violin 2 violins 3 violins 4 violins 6 violins 9 violins
Convolved 0.056 0.242 0.559 0.537 0.655 0.662
Simulated 0.007 -0.036 -0.029 0.126 0.294 0.376

Table 4.2: Lin’s concordance correlation between the naturalness rating of recorded
and synthesized (convolved and simulated) samples.

Lin’s concordance correlation coefficient [150] was employed to assess how well
the naturalness ratings of the recorded and auralized samples conform relatively to
each other. It is a statistical method to assess the reproducibility of measurement or
the inter-rater reliability by calculating how closely the twomeasurements of the same
variable lie on the 45-degree line through the origin. The concordance correlation be-
tween the naturalness ratings of the recorded samples (reference) and auralized sam-
ples (replica) was estimated, and the correlation coefficients are provided in Table 4.2.
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The correlation coefficient values show a systematic trend in which, the natural-
ness ratings of the auralized samples tend to be closer to the recorded samples with
an increase in the number of violins, and this holds for both convolved and simu-
lated samples. Similar to the observations from Figures 4.4 and 4.5, in comparison
to the simulated samples, the naturalness ratings of convolved sound samples have a
relatively higher correlation to that of recorded samples. Moreover, the observation
remains valid for all the cases with different numbers of violins involved. This indi-
cates the limitations of geometry-based room acoustic simulations in re-synthesis of
the ensemble performance.

4.2.2 Similarity between recorded and auralized samples
The similarity of convolved and simulated samples with the recorded samples was
measured using a rating scale, and the distribution of similarity ratings is presented in
Figure 4.6 (26 observations in each box plot). Analogous to the perceived impression of
naturalness, the convolved samples are assessed to be considerably more similar to the
recorded samples than the simulated ones, as indicated by higher median values non-
overlapping IQRs. The Mann-Whitney U test conducted on the pairs of distributions of
similarity ratings suggests that there exist a statistically significant difference between
the pairs of distributions for all the 6 conditions at a 5% significance level. This indicates
a significantly higher simiarity impression of convolved samples to recorded ones as
compared to simulated ones. With an increase in the number of violins, the similarity
ratings of the convolved samples appear to improve, evidenced by the increasing me-
dian value and upward-shifting trend in IQR. However, no significant trend is observed
for the simulated samples across the 6 conditions.

Based on the distribution of similarity ratings shown in Figure 4.6, the convolved
samples are not perceived as extremely similar to or identical to the recorded ones in
any of the six cases. The difference in timbre colouration of instruments which can
occur due to close-micing of the clip-on microphone recordings could be a contribut-
ing factor for that. In addition, the difference in the directivity of the sound sources
(violin, and the studio monitor) would be favoring reason for lowering the similar-
ity rating of convolved samples. The difference in spectral coloration and variation
in spatial impression such as source width and envelopment, as reported by the lis-
teners, could be the potential reason for the poor performance of the samples created
using GA-simulation. However, the shortcomings of GA-based simulations in recon-
structing the sound field of an ensemble performance need further research. This can
involve fine-tuning the GA model by matching the strength and spatial distribution
of major early reflections and incorporating perceptual experiments with an extended
vocabulary of perception-oriented verbal attributes, such as the Spatial Audio Quality
Inventory (SAQI) [151].
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Figure 4.6: Distribution of similarity ratings of convolved and simulated samples with
the recorded samples.

4.3 Summary

The perceptual quality of clip-on microphone recordings in auralization of an ensem-
ble was investigated in this study by evaluating the perceptual attributes of auralized
sound samples in comparison with the binaural recordings. Sound samples from bin-
aural and clip-on mic recordings of a string ensemble with different number of violins
were collected, and its auralization using the RIRs from in-situ measurements and GA
simulation of the concert house were generated. Afterwards, the perceptual attributes
including impression of naturalness and perception of similarity between binaurally
recorded and auralized sound samples were evaluated.

The findings reveal that the binaural recordings prepared are not always rated to
be highly natural, especially with an increase in the number of violins. Nevertheless,
the clip-on microphone signals auralized using in-situ BRIR measurements have a sim-
ilar distribution of naturalness impression to that of binaural recordings whereas the
auralization using RIRs from GA simulation showed a poorer naturalness impression.
This demonstrates the applicability of clip-on microphone recordings for auralization-
related applications. In both auralization methods, the naturalness was shown to im-
prove with an increase in the number of violins in the ensemble and thereby tending
to mask the deficiencies in the clip-on mic recordings. Furthermore, analogous to the
preceding findings, samples generated using measured BRIRs were consistently rated
to be more similar to the actual recording than to the simulated BRIRs. This high-
lights the deficiencies of geometry-based room acoustic simulations in re-synthesis of
complex acoustic sound fields.
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The results derived from the study are only based on the evaluation of represen-
tative sound samples with the minimal background noise level. In realistic cases, the
artefacts due to noise from the musician or the instrument should be accounted for
in the auralization. These results propose further investigations on the degree of per-
ceived realism/ authenticity in different binaural recording and reproduction methods
for relatively complex acoustic environments, and the quality requirements needed for
the GA simulations for the reconstruction of sound fields.
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Chapter 5

Sound source orientation perception
in in-situ conditions

While source localization has been a key topic in auditory perception research and
speech communication, the perception of source orientation is seldom researched. Al-
though orientation perception holds great importance in VR,XR domains, factors in-
fluencing it such as source directivity require detailed evaluations. This study aims to
explore the relevance of sound source directivity in orientation perception by utiliz-
ing five distinct musical instruments that demonstrate a broad spectrum of directivity
characteristics, in ecological conditions. Furthermore, the significance of room acous-
tic environments in orientation prediction is further examined by incorporating three
acoustic environments in the study, spanning from a recording studio to music per-
formance halls, each characterized by its own unique acoustic properties. The in-situ
performance of musical instruments for four source orientations with 90-degree spac-
ing – front, back, left, and right – are recorded using a binaural head positioned in
the far field of the three acoustic environments, and predictability of sound source
orientation of these samples are analyzed for each instrument and room variants. Ad-
ditionally, the potential features that influence the orientation perception including
binaural, and monaural parameters are evaluated and presented. By incorporating an
‘ecological’ performance condition for the source orientation perception, this study is
expected to offer insights relevant to music performance, sound recording techniques,
and virtual reality applications. The content of this chapter is reproduced from the
following research article:

J. Thilakan, B.T. Balamurali, W. Buchholtzer, J.M. Chen, Malte Kob, "Source orien-
tation perception; exploring the role of directivity of sound sources in diverse acoustic
environments," (manuscript under preparation).
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5.1 Materials and methods

5.1.1 Characterization of acoustic environments
To understand the influence of room acoustic attributes on the perception of source
orientation, three different music performance spaces with distinct acoustic charac-
teristics were chosen for this study which comprise the Recording studio-1 of Erich
Thienhaus Institute (abbreviated as ‘RS’ henceforth), Sommertheater Detmold (abbre-
viated as ‘ST’), and Brahmssaal of HfM Detmold (abbreviated as ‘BS’). The Recording
studio (volume of ca. 110 m3) is an acoustically treated room specifically intended for
music recording purposes. The Sommertheater (volume of ca. 2930 m3 with a seating
capacity of 320) serves as a spacious venue utilized for a variety of events, ranging from
stage plays and music performances to presentations and symposiums. In contrast,
the Brahmssaal (volume of ca. 775 m3 with a seating capacity of 110) is a dedicated
room tailored for musical performances such as solo performances, chamber music,
and small ensemble presentations. The room acoustic parameters comprising the re-
verberation time (T30), Early Decay Time (EDT), and Clarity index (C80) were estimated
from these performance spaces in accordance with the ISO standards [37] (detailed in
Appendix A) using omnidirectional sound source and NTi M2010 measurement micro-
phone, and their averaged values for 500-1000Hz octave bands are presented in Table
5.1. The extracted parameters indicate that the perceived sound field in the record-
ing studio would exhibit lower reverberation (evident from EDT and T30 values) and
enhanced clarity (evident from C80 value). Conversely, the Brahmssaal is expected to
have a more reverberant acoustic environment with a diminished clarity perception.
Meanwhile, the Sommertheater, characterized by amoderately reverberant sound field,
occupies an intermediate position in between.

Parameter Room Acoustic environment
Recording studio Sommertheater Brahmssaal

EDT (s) 0.16 0.94 1.39
T30 (s) 0.20 1.02 1.23
C80 (dB) 23.77 3.44 1.20

Table 5.1: Room acoustic parameters assessed from the three acoustic environments
(averaged for 500-1000Hz octave bands).

5.1.2 Preparation of sound samples
Five musical instruments including trumpet, trombone, transverse flute, saxophone,
and violin were chosen as the sound sources for the orientation perception inves-
tigation, and the directivity characteristics are observed to be different across these
instruments 1.2.3. While trumpet and trombone have relatively similar directivities,
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they were included as two independent observations in the objective investigation
conducted in this chapter (detailed in the coming section).

Given that directivities are frequency-dependent, a dedicated musical fragment
that covers the entire pitch range of each instrument was composed for each one to ex-
cite all the possible directivity patterns (these compositions from [152] are presented at
Appendix B). The position and orientation of sound sources and receivers in the three-
room acoustic environments are illustrated in Figure 5.1 (this top-view schematic is
only made for visual comparison, and the rooms are not on the same scale). To mini-
mize undesirable acoustic effects within the room, both the sources and receivers were
deliberately positioned off-centered from the symmetrical axis of the room. The sound
source was positioned on the stage in both the Sommertheater (ST) and Brahmssaal
(BS), while a typical recording position was selected in the Recording studio (RS). The
four potential orientations of the sound sources denoted as ‘F’, ‘B’, ‘L’, and ‘R’, represent
the orientation of ‘the musician with the musical instrument’. Neumann KU-100 Bin-
aural head was utilized in this study to capture the sound field as binaural recording.
The binaural head was consistently positioned in the far field (i.e., beyond the critical
distance limit) in all three rooms, thus minimizing the influence of the acoustic paral-
lax effect from the direct sound [71]. Furthermore, the binaural head was consistently
aligned along the frontal source orientation.

In each source orientation condition across the three rooms, musicians were in-
structed to perform the designated musical fragment with maximum consistency in
tempo, articulation, intonation, and dynamics, to make the samples as similar as pos-
sible. A metronome was also provided to the musicians to support this throughout the
performance. After performing the musical piece for a particular orientation, the mu-
sicians were instructed to revolve by 90 degrees while maintaining the acoustic center
of the instrument fixed at the specified source location, until they performed across
the four orientations. With this approach, the distance between the acoustic center
of the instrument and the receiver is expected to remain constant during the rotation,
and as a result, potential differences arising from the shift of acoustic centre of the in-
strument in overall sound level or source localization are avoided. While instruments
like the trumpet and trombone have relatively obvious acoustic centers due to a single
radiating source opening, instruments such as the flute, saxophone, and violin exhibit
complex radiation characteristics, leading to frequency-dependent acoustic centers.
Nevertheless, the primary radiation points, such as the bell opening of the trumpet,
trombone, and saxophone, the embouchure hole of the flute, and the bridge of the vio-
lin, were considered as the acoustic centers of the respective instruments in this study.
Moreover, the receiver was positioned in the far field to mitigate the auditory parallax
effect from sound sources, ensuring that Interaural Level Differences (ILD) primarily
arise from room acoustic reflections. The shadowing effect of musicians in the rotation
can be assumed to be negligible as it has shown a marginal deviation in the directivity
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Figure 5.1: Schematic diagram of three acoustic environments denoting the position
and orientations of the sound source and binaural head (BH) in the three acoustic
environments; (a) Recording studio, (b) Sommertheater, (c) Brahmmsaal (the schematic
made for visual comparison are not in the same scale).

measurements [67]. The sound samples were extracted from these binaural recordings
using the REAPER Digital Audio Workstation. Given that the primary focus of the
study is on the relationship between the room acoustics and the dynamically varying
directivity patterns associated with a musical signal, the reverberation tail at the end
of each sample was eliminated by applying a fade-out filter.

5.1.3 Perceptual evaluation of sound samples

A group of 15 participants, consisting of Tonmeister students and experienced musi-
cians, participated in the listening test. All the participants had undergone musical ear
training, possessed prior experience in critical listening assessment, and had a mini-
mum of 12 years of musical experience. Research indicates that trained musicians typ-
ically exhibit ability and sensitivity in selectively analyzing and assessing the intricate
spectral and temporal characteristics of sounds compared to non-musicians [17; 18].
Therefore, it was expected that the test participants would provide concordant test re-
sponses. The goal of the test was to predict the source orientation in each sound sample
by identifying one of four possible directions (front, back, left, and right), solely based
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on auditory cues. To mitigate potential confusion arising from the varied ways of
holding the involved instruments by the musician while performing (e.g., the trumpet
is held straight by the musician, while the violin is held at an angle), participants were
instructed to predict the ‘orientation of the musician holding the instrument’ relative
to the listener. A listening test application was created using MATLAB app designer
with a dedicated Graphical User Interface (GUI) (see Figure 5.2) to perform the listen-
ing test. This application allowed participants to listen to each sound sample multiple
times and make their orientation predictions accordingly.

Figure 5.2: The Graphical User Interface (GUI) of the listening test application.

A training audio file containing the binaural audio samples of the instruments in-
volved in the study was provided prior to the commencement of the listening test, with
the aim of familiarizing listeners with the binaural head recording. The participants
were permitted to adjust the gain during this training phase, but they were asked to
maintain a fixed gain afterward for the performance of the listening test. Following the
completion of the training phase, participants were introduced to the test GUI (see Fig-
ure 5.2), and instructed to proceed with the listening test on orientation prediction of

77



Chapter 5. Sound source orientation perception in in-situ conditions

60 audio samples (5 instruments× 3 rooms× 4 orientations). The sound samples in the
test were presented in a randomized order to avoid direct comparison between sam-
ples and mitigate the influence of memory retention effect on the ratings. Additionally,
the randomization was unique for each participant to prevent any potential sequential
effects in the sample ratings. The test was conducted in an acoustically treated studio
room, utilizing Beyerdynamic DT 770 Pro closed-back studio headphones and an RME
Babyface Pro sound card for playback of the binaural audio files from the computer.
On average, participants took approximately 30 minutes to complete the listening test.
Following the test, a brief discussion session was held to explore the potential subjec-
tive cues they found useful for orientation perception.

5.1.4 Extraction of acoustic features
Binaural Room Impulse Responses (BRIRs) were measured for each of the four ori-
entations in the three rooms, using the Neumann KH120A studio monitor speaker as
the source and the same Neumann KU100 binaural head as the receiver. The Neu-
mann KH120A studio monitor loudspeaker is shown to possess a directivity profile
that is very close to that of a trumpet [147]. Additionally, the trombone exhibits a
similar directivity profile to the trumpet, albeit with a relatively lower pitch range.
Consequently, the way the loudspeaker excites different room acoustic reflections for
each orientation is expected to be similar to the way these instruments do. As a re-
sult, the interaural parameters derived from these BRIRs can serve as representatives
of trumpet and trombone samples for each orientation condition, due to the similar
directivity characteristics between the loudspeaker and these instruments. However,
these parameters may not necessarily correspond with other instruments due to their
different directivity characteristics compared to the loudspeaker.

Along with the established Interaural Level Difference (ILD) parameter in source
orientation, an extended set of interaural parameters including Interaural Time Differ-
ence (ITD) and Inter Aural Cross Correlation (IACC) that are known for source localiza-
tion and spatial perception [153; 154], were extracted from the BRIRs. ILD denotes the
difference in sound level (intensity) perceived between ears, whereas ITD represents
the difference in the time taken for sound to reach each ear; both parameters are consid-
ered pivotal in sound source localization within the horizontal plane [74]. IACC refers
to the correlation between the signals received at the two ears, signifying the spatial
impression of the Apparent Source Width (ASW) of the sound source. A high IACC
value indicates a focused or centralized source with a narrow apparent source width,
providing localization cues, while awide and diffuse source typically yields lower IACC
values [154; 155]. To analyze the significance of direct sound and early reflections ver-
sus late reverberation on source orientation perception, these interaural parameters
were extracted specifically from the direct+early (0 - 80ms) and late (80ms - end) seg-
ments of the impulse responses of each source orientations within the three rooms
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using the ITA-toolbox[156]. Following the proposed standards [37; 18; 153], a single
value for each parameter representing their overall sensation was obtained by averag-
ing across specific frequency bands, and utilized for each specific case: the ITD value
was averaged across 250 - 1000Hz octave bands, the ILD value was averaged across
500 - 4000Hz octave bands, and the IACC value was averaged across 250 - 4000Hz oc-
tave bands (the frquency band centered at 125 Hz was avoided, as it was removed from
the audio samples due to background noise). While ILD and ITD may possess positive
or negative values corresponding to dominant left or right ears, their absolute values
were considered to evaluate their relationship with orientation prediction accuracy in
subsequent sections.

Apart from the interaural parameters, spectral and temporal parameters such as
Spectral Centroid (SC), and temporal energy ratios including Direct-to-Reverberant
Ratio (DRR) and Clarity parameter (C80) were computed from the individual channels
of the binaural impulse responses. The spectral centroid parameter, denoting the ‘cen-
ter of mass’ of the spectrum, is calculated as the weighted mean of the frequencies
present in the signal, and it is observed to better represent the brightness of the instru-
ment timbre [14].

The influence of spectral centroid values from IRs in orientation perception was
analyzed for two different scenarios here. Firstly, to explore the change in the ‘spectral-
tilt’ in the direct sound component from the rotation of the sound source (referred in
[76]), the centroid values were estimated from the direct sound (0-5 ms) of the BRIR.
Secondly, to investigate the influence of spectral coloration differences in perceived
instrument sound introduced by the various room acoustic conditions on orientation
perception, centroid values were estimated from the 0-RT60 portion of the BRIR, which
covers a 60 dB decay from direct sound by excluding the noise floor. For the first case,
a single time window of 5 ms was utilized, while for the second case, a moving time
window of 20 ms with an overlap length of 10 ms was employed. In both instances, a
single centroid value is calculated as themean of centroid values from the two channels
of the BRIRs.

The DRR quantifies the strength of direct sound relative to room reflections, cal-
culated as the logarithmic ratio between the energy of direct sound (0-5ms) and the
energy of room reflections (5ms-end). Since it is on a decibel scale, the log is performed
on the mean value of the ratios from the two channels. On the other hand, the Clarity
parameter (C80) assesses the strength of direct sound and early reflections (0-80ms)
compared to late reverberation (80ms - end). While these energy ratio parameters are
typically extracted from monaural room impulse responses and presented as an aver-
aged value across multiple measurements [37], in this study we have extracted them
from the BRIRs as individual observations to better align them with the perceptual
impressions in each condition.
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5.2 Results

5.2.1 Perceived source orientation in different conditions

The prediction rates of four actual (physical) source orientations in the four perceived
conditions are presented as a radial plot as well as a confusion matrix in Figure 5.3 by
averaging across all instruments in all room acoustic conditions. Rows in the confu-
sion matrix show the percentage of responses perceived across the four orientations
for each actual orientation, and they are depicted in the polar plot using different colors
for improved visualization. The diagonal elements of the confusion matrix represent
the prediction accuracy for each physical orientation, and they are highlighted in the
appropriate directions of the polar plot. The incorrect responses of a particular orien-
tation, i.e., mistakenly perceived orientations, are indicated by the other elements in
each row of the confusionmatrix. The accuracy (abbreviated as ‘ACC’) of overall orien-
tation prediction averaged across all instrument, room, and orientation combinations
is determined to be 38.3%, and it is also depicted in the plot.

Figure 5.3: Overall prediction rates perceived in four orientations (in percentage scale)
averaged across instruments and rooms, with prediction accuracy (ACC) of 38%.

80



5.2. Results

Influence of orientation direction in prediction

The four source orientations are observed to have prediction accuracy within a range
of 36-40% when averaged across all instruments and room combinations (see Figure
5.3). Although previous research suggests that the sound source oriented toward the
listener, i.e., the front orientation, is relatively easier to predict than in other cases [80],
such a trend is not evident in this study. This could possibly be due to the broader
variations in the distinct directivity and acoustic characteristics of the musical instru-
ments and performance spaces incorporated. The result also suggests that the mis-
classification of laterally oriented samples in the opposite directions, i.e., perceiving a
left-oriented sample in the right direction and vice versa, was minimal in the overall
perception of source orientation.

Figure 5.4: Distribution of prediction accuracies for four orientation angles (in %).

For a comprehensive understanding of the prediction accuracy variation of each
source orientation condition, the distribution of individual prediction accuracies of
the four orientations from the 15 conditions (5 instruments×3 rooms) is depicted in
Figure 5.4 using a box plot and the corresponding Probability Distribution Function
(PDF). Except for the back orientation, the remaining three orientations appear to ex-
hibit a skewed distribution, characterized by a tail in the PDF toward high prediction
accuracies. Since the normality assumption is violated in the distribution of ratings for
certain orientations (validated using the Shapiro-Wilk test [149]), the Kruskal-Wallis
test is conducted to examine the statistical difference among the four groups under con-
sideration. The Kruskal-Wallis test, the non-parametric alternative of one-way Anal-
ysis of Variance (ANOVA), evaluates the statistical difference between two or more
groups by comparing their mean ranks [157]. The result of the Kruskal-Wallis test
conducted among the prediction accuracies of four angles showed that there is no sta-
tistical difference between the mean ranks of the four groups examined (χ2(3)=0.36,
p=0.95). These results suggest that the prediction accuracy for the front orientation is
not significantly higher compared to the accuracies in the other three orientations.

81



Chapter 5. Sound source orientation perception in in-situ conditions

As an extended evaluation, the Mann-Whitney U test [141] was performed to an-
alyze whether there exists any statistical difference between the distribution of pre-
diction accuracies of lateral (left and right) and medial (front and back) samples. As
mentioned in chapter 3, the Mann-Whitney U test is a non-parametric version of Stu-
dent’s t-test that is utilized due to the non-normal distribution of the two classes [141].
The results showed no statistical difference between the prediction accuracy values of
lateral and medial samples (p=0.77).

Role of instrument directivity in prediction

Figure 5.5: Variation of prediction rates in each orientation for five instruments; (a)
trumpet, (b) trombone, (c) saxophone, (d) flute, (e) violin.

The variation in prediction rates of source orientation for the five musical instru-
ments involved is presented in Figure 5.5, by averaging across the three different acous-
tic environments. Similar to the previous case, the perceived identification rates of
each physical orientation in the four directions are illustrated, with the prediction ac-
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curacy of each specific orientation highlighted in the figure. The overall prediction
accuracy (highlighted in the figure as ‘ACC’) ranges from 34 to 45% among the instru-
ments involved. Highly directional instruments such as the trumpet and trombone
exhibit relatively higher accuracy (41%, 45% respectively) compared to instruments
like the saxophone, flute, and violin (35%, 34%, and 35% respectively), which possess
more complex directivity. However, upon examining the detailed responses of each
instrument in the four orientations, it becomes evident that all the instruments have
diverse prediction accuracies ranging from 20% to 55%, with some specific orientations
having strong or weak predictability. The trumpet and trombone are shown to have
relatively well-perceived across all orientations except the front one. Although they
exhibit the lowest rate of lateral misclassification (perceiving left orientation as right,
and vice versa), when it comes to the medial directions, the front orientation of the
trumpet with the lowest prediction accuracy is shown to be perceived more to the
back direction. Unlike these highly directional instruments exhibiting the lowest pre-
diction accuracy towards the front direction (front accuracy of 22%, 35% respectively),
instruments like the saxophone and violin demonstrate relatively stronger accuracy to
the frontal direction compared to other orientations (front accuracy of 55%, 47% respec-
tively). Given that the performers tried to play the musical stimuli with the maximum
possible consistency, the spectral content radiated from the source is anticipated to
be consistent across the four orientations. Therefore, these disparities in prediction
accuracies of instruments in specific directions could potentially stem from the radia-
tion characteristics of individual instruments that cause variations in the strength and
coloration of direct sound, as well as different room reflections.

Figure 5.6: Distribution of prediction accuracies (in %) for five instruments; Trumpet
(Tru), Trombone (Tro), Saxophone (Sax), Flute (Flu), and Violin (Vio).

The distribution of individual prediction accuracy values of the five instruments in
12 conditions (3 rooms×4 orientations) is presented in Figure 5.6 using box plot and
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probability density function. Although the interquartile range and whiskers of the
box plots largely overlap between the instruments, the trombone exhibits a relatively
higher accuracy distribution, whereas the flute demonstrates a narrower distribution
in relatively low accuracy values. The Kruskal-Wallis test, conducted due to the non-
normal distribution of prediction accuracy ratings, indicated no statistical difference
between the five instruments involved (χ2(4)=2.24, p=0.69). Therefore, although indi-
vidual instruments exhibit relatively high and low prediction accuracies only in spe-
cific directions, likely due to their directivity features, no significant difference was
observed among the instruments when comparing their prediction accuracies across
all orientations in the different room acoustic environments. Consequently, no specific
instrument with particular directivity characteristics appears to outperform others in
this orientation perception study.

Role of room acoustics in orientation prediction

The variation of prediction rates of each source orientation across the three acoustic
environments is illustrated in Figure 5.7. The recording studio, characterized by low
reverberation with strong direct sound and early reflections (as indicated by EDT, T30,
and C80 values in Table 5.1), demonstrates an overall prediction accuracy of 48%. In
contrast, the Brahmssaal, featuring a high reverberance with weaker clarity percep-
tion, achieves an accuracy of 28% which is just above the chance level of 25%. With a
prediction accuracy of 38%, the Sommertheater environment falls between the other
two environments in terms of accuracy, and this ordering seems to be consistent with
the room acoustic parameters values as well.

Every orientation in the recording studio except the back one exhibits high pre-
diction accuracy compared to the conditions in other rooms. However, the accuracy
of the back orientation was 28%, slightly above the chance level, and it is observed to
be more frequently misclassified in the front direction. This could be attributed to the
presence of strong reflection from the back wall or the presence of high-frequency in-
formation in the perceived sound, however, advanced studies are required to validate
this observation. On the other hand, misclassification among the lateral samples (per-
ceiving left orientation as right, and vice versa) reaches its minimum in the recording
studio environment (<5%). Within the Sommertheater, each orientation demonstrates
moderate prediction accuracy, spanning from 31% to 40%. In contrast to the two men-
tioned acoustic environments, three orientations (front, left, right) in Brahmssaal are
observed to possess prediction accuracies close to the minimum chance level of 25%,
while only the back orientation in Brahmssaal demonstrates relatively improved pre-
diction accuracy of 40%. Moreover, those three orientations (front, left, right) are noted
to be predominantly misclassified towards the back direction with a prediction rate
ranging between 30–40%, exceeding their true prediction accuracies. This tendency
of perception of back orientation might possibly be due to the strength and spectral
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Figure 5.7: Variation of prediction rates in each orientation for the three acoustic en-
vironments; (a) Recording studio, (b) Sommertheater, and (c) Brahmssaal.

coloration of late reverberation of the room which needs further investigation. Based
on the systematic trend of decreasing prediction accuracy with decreasing C80 and in-
creasing EDT and T30 parameters, it can be hypothesized that high reverberance and
low clarity sensations may negatively impact the perception of source orientation.

Figure 5.8: Distribution of prediction accuracies (in %) for three rooms: Brahmssaal
(BS), Sommertheater (ST), and Recording studio (RS).

Figure 5.8 illustrates the distribution of prediction accuracies of 20 different con-
ditions in the three acoustic environments involved (5 instruments×4 orientations).
While the recording studio shows a median centered around 50% with a wide in-
terquartile range (IQR), the median value is observed to be 27% in the Brahmssaal,
accompanied by a narrower distribution with an IQR ranging between 20% and 32%.
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The Kruskal-Wallis test conducted between the three groups of data showed that it
failed to reject the null hypothesis that there is no difference in the mean ranks of the
three groups (χ2(2)=6.83, p=0.03). This suggests the distinction of prediction accura-
cies across the three room acoustic environments involved in the test. Dunn’s post hoc
test, conducted to evaluate which groups differed significantly from one another, in-
dicated a significant difference between the Brahmssaal and recording studio (p=0.03).
However, the Sommetheater did not show a significant difference with the Brahmssaal
(p=0.29) or the Recording studio (p=0.90).

5.2.2 Exploring acoustic parameters in orientation perception

Based on insights derived from previous research, this section explores the impact of
potential interaural andmonaural parameters discussed in earlier studies on source ori-
entation and source localization perception, aiming to assess their influence on source
orientation perception in musically realistic in-situ conditions. As previously men-
tioned in section 5.1.4, the loudspeaker employed for measuring the impulse responses
is expected to have a similar spatial distribution of energy to that of trumpet and trom-
bone in the room acoustic environments due to their similar directivity characteristics.
Therefore, the binaural andmonaural parameters extracted from the impulse responses
for specific orientations are expected to correspond with the orientation perception of
the trumpet and trombone in those directions. Following this hypothesis, the varia-
tion of prediction accuracies of the two instruments against the acoustic parameters
extracted from the BRIRs is illustrated here, and the correlation between the prediction
accuracies and the parameters is estimated and presented. The prediction accuracies
of the trumpet and trombone are regarded as two independent observations here for
the analysis against each parameter extracted from a particular impulse response.

Interaural parameters derived from BRIRs
Along with the established ILD parameter in source orientation, the relationship of
prediction accuracy with an extended set of interaural parameters, encompassing ITD
and IACC is analyzed here. Since features influencing lateral (i.e., left, right orien-
tation) and medial (i.e., front and back orientation) orientations are observed to be
different in the previous studies, lateral and medial samples are analysed separately
for each parameter.

Figure 5.9 illustrates the variation between the prediction accuracies against the
ILD parameter values for early reflections (0-80ms) and late reverberation (80ms-end).
Acoustic conditions that correspond to each of the obtained parameter values are high-
lighted on the top x-axis with their room abbreviation (RS, ST, and BS) followed by the
orientation in subscript (F, L, B, R for front, left, back, right orientations). Since left and
right channels would have positive/negative values, the absolute of ILD values aver-
aged over 1000-4000 Hz octave bands is presented here for each orientation condition.

86



5.2. Results

Moreover, the Spearman’s rank correlation coefficient (abbreviated here as ρ), a non-
parametric correlation that asseses themonotonic relationship between variables[158],
is estimated between the extracted parameters and their corresponding prediction ac-
curacy values from different groups of samples (all samples, lateral samples only, and
medial samples only), and presented in Table 5.2.

Figure 5.9: Variation of true positive values with Interaural Level Difference (ILD) es-
timated for (a) early reflections, (b) late reverberation.

Considering the variation of ILDearly across all samples, a statistically significant
positive trend can be observed between ILDearly and prediction accuracies (ρ=0.56,
p<0.05), while no clear trend is observed between the ILDlate and overall samples.
When examining the samples of lateral and medial orientations separately, predic-
tion accuracies of lateral samples are observed to have a strong tendency to increase
with the increase in ILD values which holds true for both ILDearly (Spearman’s rank
correlation coefficient ρ=0.54, p<0.05) and ILDlate (ρ=0.85, p<0.01). Since the binaural
receiver is placed in the far field of the room, the ILD caused by direct sound (0-5ms)
can be neglected from these observations due to the distance between source and re-
ceiver, and the ILDearly can be considered specifically caused by the early reflections
from the room acoustic environments (5-80ms). This is in accordance with previous
studies on orientation perception [71]. Interestingly, the ILDs from late reflections also
seem to have a direct positive relationship with the orientation perception in lateral
directions, which needs further exploration. Although source orientation in medial di-
rections (i.e., front and back) does not produce ILDs between the ears in reflection-free
environments, ILDs are observed to occur in real rooms due to the presence of room
acoustic reflections which may positively or negatively impact the orientation percep-
tion. However, unlike the lateral samples, no significant trend is observed between
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the prediction accuracies of samples from medial orientations and their corresponding
ILD values.

The Recording Studio featuring dry acoustic characteristics seems to possess strong
early reflections that produce ILDs between the two channels, which could be the rea-
son in higher overall lateral prediction accuracy (mean prediction accuracy of 90% &
56.7% respectively for right and left orientation, in the case of trumpet and trombone).
On the other hand, the Brahmssaal, characterized by a strong diffuse field, lacks strong
lateral reflections that produce ILDs and thereby result in the least overall lateral pre-
diction accuracy (mean prediction accuracy of 20% & 23% respectively for right and
left orientation). Looking at the individual observations, specific cases like the right-
ward orientation in Sommertheater (STR) having ILD values within the JND range of
0.5-0.8 dB is observed to possess relatively high prediction accuracy (mean prediction
accuracy of 73.3% for trumpet and trombone; 44% for all instruments), which opens up
the possibility of advanced features involved in the lateral orientation perception.

Type of
parameters Parameter Overall

samples
Lateral

samples (L,R)
Medial

samples (F, B)

Interaural parameters
from BRIRs

ILDearly 0.56** 0.54* 0.34
ILDlate 0.35 0.85** -0.29
ITDearly -0.26 -0.44 0.19
ITDlate -0.46 -0.52 -0.58
IACCearly 0.48* 0.85* -0.01
IACClate 0.10 0.36 0.02

Spectral parameters
from BRIRs

SC 0.67** 0.83** 0.23
SCDir -0.24 0.34 -0.60*

Temporal parameters
from BRIRs

DRR 0.03 0.68* -0.58*
C80 0.24 0.70** -0.29

Table 5.2: Spearmann correlation coefficients estimated between the prediction accu-
racies of each acoustic environment against its corresponding parameter explored in
the study.

Figure 5.10 illustrates the variation between the prediction accuracies against the
ITD parameter values for early reflections and late reverberation. Unlike ILD, no sta-
tistically relevant trend is observed between the prediction accuracies of both lateral
and medial samples and its corresponding ITDearly and ITDlate values (see Table 5.2). As
previous studies suggest, the ITD parameter is observed to be important for localiza-
tion aspects for low to mid-frequency range [74; 153]. Within this frequency range, the
instruments mostly show more omnidirectional characteristics, with slight variations
in the directivity shapes. This could be a potential reason for ITD having no direct role
in orientation prediction.
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Figure 5.10: Variation of true positive values with Interaural Time Difference (ITD)
estimated for (a) early reflections, (b) late reverberation.

The variation of prediction accuracies of acoustic conditions against the IACC val-
ues is presented in Figure 5.11 for the early and late parts of the impulse response.
A trend of increase in the overall prediction accuracy values with an increase in the
IACCearlyvalues is observed (ρ=0.48, p<0.05), and it is highly pronounced for the lat-
eral samples (ρ=0.85, p<0.05). However, unlike ILDs, no such trend is observed for
the late part, IACClate. In real performance spaces, depending on the acoustic prop-
erties of rooms, the room acoustic reflections decorrelate the signals received in the
two ears which results in a decreased IACC value with a broader sensation of Appar-
ent Source Width (ASW). A higher IACC value, representing an increased similarity
between signals received in the two ears, corresponds to the perception of a narrow
ASW with focused and localized sound source perception. Therefore, a focused and
localizable source perception which improves with an increase in IACC may have an
influence on the orientation perception of lateral conditions, which shall be explored
further. However, no such trend is observed between prediction accuracies of medial
samples against their perceived source width. Although ILD and IACC refer to two
different aspects of sound perception, and they are estimated differently from the im-
pulse responses, it should be noted that their values across 12 acoustic conditions are
observed to show a high linear correlation (ρ=0.97 between ILDearly and IACCearly, and
ρ=0.88 between ILDlate and IACClate).
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Figure 5.11: Variation of true positive values with Interaural Cross Correlation (IACC)
estimated for (a) early reflections, (b) late reverberation.

Other spectral and temporal parameters from BRIRs
To understand the influence of spectral coloration brought by the room acoustic en-
vironment and the timbre difference in direct sound introduced by the rotation of the
source on the orientation perception, the variation of spectral centroid values for both
the overall BRIR and the direct sound part of the BRIR against the prediction accura-
cies of trumpet and trombone was analyzed, and the results are presented in Figure
5.12 (a) and (b) respectively. For the overall spectral centroid parameter from BRIR,
a positive relationship is observed between the centroid value and the prediction ac-
curacy for the overall samples (ρ=0.67, p<0.001), and this association is stronger for
lateral orientations (ρ=0.83, p<0.001). When examining the overall spectral centroids
of room impulse responses, which depict the transformation of sound by the acoustic
environment from the source to the receiver, a high spectral centroid value is expected
to enhance the energy in high frequencies, leading to a brighter timbre of the perceived
instrument sound. As the high-frequency sound component of the instrument carries
directivity information, it can be hypothesized that the room acoustic environments
with high centroid values, featuring reflections having high-frequency content, are ex-
pected to support to the orientation perception. Conversely, environments with low
spectral centroid are expected to carry a lower degree of directional information due to
the attenuated high-frequency components, leading to a deteriorated prediction accu-
racy. Consistent with this hypothesis, in the case of Brahmssaal featuring low centroid
values across all directions, all data points exhibit accuracies below 35% except for the
trumpet in the back orientation as an outlier at 66%, while the other two environments
featuring high centroid values showing relatively better accuracies than Brahmssaal.
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When comparing the centroid values of the direct sound part, no significant trend
is observed across the overall samples and samples from lateral orientations. How-
ever, when comparing the centroid values of samples from medial orientations, the
data points are observed to be clustered into two distinct groups where, alongside the
centroid values, these two groups do not overlap in prediction accuracy values, except
for an outlier point. Consequently, a statistically significant negative correlation is ob-
served between the centroid values of direct sound and their prediction accuracies of
medial samples (ρ=-0.60, p<0.001), whereas no such trend is observed for the lateral
orientation samples. The reduced centroid values of back orientation in comparison to
the front orientation, referring to the spectral tilt mentioned in [76], is expected due to
the highly directional beam-like radiation characteristics exhibited by both the loud-
speaker and the musical instruments. Following that, the decline in centroid values
observed in the Figure 5.12, could serve as a potential attribute for distinguishing back
from the medial samples.

Figure 5.12: Variation of prediction accuracies with spectral centroid of BRIR estimated
for (a) the overall BRIR (b) only for direct sound.

Figure 5.13 shows the variation of prediction accuracies against the two temporal
energy ratio parameters from BRIRs, the DRR and the C80 parameter. While there is no
overall trend visible between the DRR and prediction accuracy values of all samples,
a statistically significant negative relationship is observed between the DRR values
and the prediction accuracies of medial samples (ρ=-0.58 p<0.05). Although the front
orientations possess higher DRR than the back orientations, only the front orientation
in the recording studio seems to have a positive DRR value in the given 12 conditions.
This demonstrates the presence of a stronger direct sound component than the room
reflections in this specific condition. A lower DRR value for the non-facing back angle,

91



Chapter 5. Sound source orientation perception in in-situ conditions

with approximately a 13 dB difference from the facing front angle, may have served as
a potential cue for higher prediction accuracy in distinguishing back orientation from
front in echoic environments, consistent with observations from previous studies [79].

The front orientations are observed to have lower accuracy than the back orienta-
tion, and it is valid for both trumpet and trombone samples in the three acoustic en-
vironments. While the negative DRR values representing weak direct sound can be a
potential reason that may hinder the prediction accuracy of front orientation in ST and
BS, the front orientation in RS with a strong direct sound component still possesses
weak prediction accuracy. This can be attributed to the influence of other potential
room acoustic reflection-related attributes that deteriorate the orientation perception
in front direction, making this orientation perception a multifaceted problem. While
the variation in DRR is relatively limited, a trend of enhancing prediction accuracy
through improved DRR can be inferred for lateral samples (ρ=0.68, p<0.05). The pres-
ence of both strong early reflections, known to support lateral orientation prediction,
and diffuse reverberation, which is expected to oppose orientation prediction, will re-
sult in a lowering of DRR values. Thus, interpreting the influence of DRR alone on
lateral orientation prediction can be challenging, especially within a limited range of
variation observed in lateral samples.

Figure 5.13: Variation of prediction accuracies with (a) Direct-to-Reverb Ratio (b) C80
parameter.

When analyzing the C80 parameter, RS featuring a high clarity impression seems
to have a higher prediction accuracy. On the other hand, the BS and ST, featuring a
low clarity perception, seem to have relatively low prediction accuracy. Observing the
trend of medial and lateral samples, while no specific trend is observed for medial ori-
entations, a statistically significant positive relationship is observed between the clar-
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ity parameter and prediction accuracy of lateral samples (ρ=0.70, p<0.01). Previous
observations suggesting that environments characterized by strong early reflections
support orientation perception [71] are observed to be valid here for samples of lateral
orientation, while no such trend is observed for medial orientation in the given con-
ditions. The presence of strong early reflections, particularly from lateral directions,
resulting in a higher C80 value would have supported the orientation perception of lat-
eral samples by providing binaural cues. This could be a potential reason for such a
trend. However, room acoustic reflections from other directions apart from lateral ones
(such as strong back-wall reflections) might have also contributed to an increased C80
value, however, the role of such reflections in these trends needs further exploration.

5.3 Discussion

While previous studies have primarily focused on source orientation perception us-
ing loudspeakers and human speakers by often overlooking the significance of room
acoustic attributes, this study examined the role of directivity of the sound source
in orientation perception for the first time in diverse room acoustic conditions. This
was accomplished by conducting in-situ recordings of five musical instruments having
varied directivity properties in three acoustic environments characterized by distinct
perceptual properties and assessing their outcomes in orientation perception in a static
binaural listening condition. In this investigation, the perceptual evaluation of audio
samples was exclusively conducted with tonmeister students and musicians who have
received technical and musical ear training. This ensures reliable responses based on
their experience in critical listening and familiarity with the instruments involved.

The influence of already established and other potential parameters on orientation
prediction was investigated independently for lateral andmedial samples by extracting
them from binaural room impulse responses (BRIRs) recorded using a loudspeaker for
each orientation. These parameters were then compared against the prediction accura-
cies of the trumpet and trombone, which exhibit comparable directivity characteristics
to that of the loudspeaker. When looking at the overall trend of variation of parameters
extracted from BRIRs against prediction accuracies of all samples, parameters includ-
ing ILDearly, IACCearly, and Spectral Centroid seem to show a positive relationship with
the overall prediction accuracy values. While this positive relationship strengthens
for lateral orientations, it remains insignificant for medial ones, suggesting that the
acoustic cues used to judge lateral and medial orientations differ.

When it comes to parameters influencing to lateral judgment, the ILD parame-
ter, previously identified as essential for orientation prediction in lateral directions
[75; 76; 71], is confirmed to be a significant factor in lateral orientation perception in
in-situ conditions involved in this study. While the ILD resulting from early reflec-
tions was emphasized as a pivotal cue, ILDs from late reflections also appear to exhibit
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a positive correlation with lateral orientation perception in this study, which needs
to be validated further. Furthermore, the IACC parameter extracted from the early
portion of the impulse response, reflecting apparent source width perception, exhibits
a positive correlation with lateral orientation prediction accuracy; higher IACC val-
ues, reflecting a focused and localized source perception, seem to lead to enhanced
prediction accuracy. However, it should be noted that despite the two parameters rep-
resenting distinct aspects of sound perception and being calculated differently, they
demonstrate a high correlation among the 12 environments examined in the study.
The ITD parameter, known for its significance in source localization, nonetheless, ex-
hibits no significant trendwith prediction accuracies, which could be due to itsminimal
influence in high-frequency regions above approximately 1000Hz.

The spectral brightness of overall impulse responses assessed using the spectral
centroid seems to have a positive correlation with the lateral sound samples. Access
to high-frequency spectral content, including both direct sound and room reflections,
is expected to convey variations in source directionality, potentially explaining the
positive relationship between spectral centroid and orientation perception, as noted
in previous studies [81]. However, this relationship does not hold for medial samples.
As the spectral centroid values are observed to decrease systematically with increas-
ing reverberation time among the three rooms, this observation warrants further in-
vestigation. Considering the temporal energy distribution in the impulse responses,
analysis employing the C80 parameter reveals that strong early reflections relative to
the reverberation are particularly significant for lateral conditions. This finding is in
line with the observations from the ILD analysis and remains consistent with previous
results [71]. While early reflections from lateral directions are expected to generate
high ILD cues, a higher C80 value can also be due to reflections from other possible
directions as well. Given that the directional attributes of early reflections have been
demonstrated to affect source localization properties [49], it is plausible that the order
and directional properties of early reflections could also impact orientation perception.
Moreover, the ILD variation within the conditions explored in this study is limited to
2-3 dB, which may or may not be significant enough compared to its JND value of 05-
0.8 dB [159; 160]. Therefore, the strength and directionality of early reflections causing
ILD in orientation perception shall be explored in future research.

Regarding the medial orientations, while front orientations are observed to be rel-
atively easy to predict in previous studies [80; 79], a lower prediction accuracy was
observed for the front than the back orientation in this study, and it is consistent across
the three rooms and two instruments involved in the objective analysis. Factors such
as high ILD values for the front orientations in specific cases could be a potential rea-
son for this. Although this study focused on analyzing the individual variations of
parameters, the observations from medial samples suggest that the decision of orien-
tation prediction may be influenced by multiple attributes involved. This points to the

94



5.3. Discussion

multidimensionality of the factors involved in the orientation perception judgment.
Although no specific trend is evident between the centroid values of front and back
orientations from BRIRs, when specifically analyzing the direct sound excluding re-
flections (0-5ms of the BRIR), a spectral-tilt in the high-frequency region is observed
between the front and back orientations which results in a decrease in spectral cen-
troid values from front-to-back orientations. Given that this spectral-tilt is recognized
as a cue for medial orientation identification in anechoic conditions [76], it is plausible
that it also played a role in perceiving the front and back orientations in the in-situ
conditions examined in this study. The DRR, which is found to be a potential cue for
distinguishing between facing and non-facing angles in medial orientations, exhibits
a relatively higher value for front-facing angles compared to the back ones with a
difference of around 13 dB. The low DRR values, which represent dominating room
reflections over the direct sound, could also be a supportive cues listeners utilized in
identifying the back orientation in the medial samples.

Considering the overall response in Brahmssaal, all orientations except back orien-
tation had an accuracy of just the chance level, and they seemed to be dragged towards
the back orientation by exhibiting a higher prediction rate in that direction (see Figure
5.7). The darker timbre of the perceived sound due to suppressed high-frequency infor-
mation, and a low DRR value, accompanied by a diffuse field that lacks ILD and IACC
cues for lateral samples, could be the reasons behind this phenomenon. However, when
specifically analysing the spectrally bright instrument like the trumpet, these factors
appear to have an opposing effect in Brahmssaal which results in easy identification
of back orientation with an accuracy of 66%, making it an outlier point in the objective
analysis. Similarly, while the accuracy values for the other three angles are high, the
back orientation is noted for its poor accuracy in the overall orientation perception of
the recording studio. Factors such as high spectral centroid and improved clarity of
the acoustic environment in the presence of rear wall reflection may also have influ-
enced this reduced accuracy for back orientation. Hence, while this study primarily
delved into individual features affecting orientation perception, it underscores themul-
tifaceted nature of orientation perception and its associated parameters. Consequently,
it necessitates future research to investigate the inter-relationship and contribution of
involved parameters in orientation perception.

A univariate analysis using Kruskal-Wallis test was conducted in this study to in-
dependently assess the influence of facing angle, instrument directivity, and room
acoustics on sound source orientation perception. Since these mentioned three as-
pects can be considered to be independent aspects of variations with no direct inter-
actions, concerns about multicollinearity can be neglected. Moreover, the data used
for the Kruskal-Wallis test is perfectly balanced; each level of one factor is equally
represented across all levels of the other factors (e.g., when comparing three room
acoustic conditions, each room contains samples from five instruments across four
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orientation angles, etc.). This balanced data structure in the univariate analysis en-
sures that confounding effects between factors are unlikely, strengthening the validity
of independent factor assessments. While this univariate analysis provides an initial
understanding of each attribute’s contribution to orientation perception, future studies
shall employ mixed-effects models to further investigate their combined influence on
orientation prediction and assess the individual contributions of these factors.

Previous studies have indicated that the position of the sound source relative to
the receiver’s head affects orientation prediction, with the position of sound source
in front of the head demonstrating the highest accuracy [79]. As an initial step to-
wards a comprehensive evaluation of orientation perception of diverse sound sources
in in-situ conditions, this investigation is limited to the front source position. Studies
have demonstrated that dynamic cues from the movement of sound sources, such as
the rotation of the source, can enhance accuracy [80]. Furthermore, although head
rotation movements have been demonstrated to be crucial for enhancing source local-
ization tasks [161], they were restricted in this study to gain insights into analyzing
and interpreting individual parameters based on room acoustic reflections. Therefore,
it necessitates further exploration of the impact of attributes relevant to real-world
conditions such as the location and movement of sound sources and receivers on ori-
entation perception. While earlier studies typically employed either noise or speech
signals, this research utilized distinct compositions tailored to each instrument which
covers its whole pitch range, and recorded their performances in realistic musical en-
vironments. Nevertheless, it’s worth noting that the attributes of the musical content,
such as dynamics and tempo, may have impacted the predictive outcomes. Given that
binaural reproduction has constraints, such as front-back confusion, future investiga-
tions could integrate spatial audio capture and reproduction methods to enhance the
exploration of orientation perception.

5.4 Summary

This investigation delved into analyzing how the directivity of the sound source and
acoustic attributes of performance space influence the perception of source orientation
in real-world conditions. This was performed by utilizing static binaural recordings
of the performance of five different instruments with diverse acoustic characteristics
in three performance spaces featuring contrasting acoustic characteristics. Contrary
to the previous findings, none of the four orientations analyzed in this study (front,
back, left, right) demonstrate statistically higher prediction accuracy among the var-
ious conditions considered in the study. Although the brass instruments (trumpet
and trombone) are observed to have relatively higher overall prediction accuracies
of source orientation, when comparing the individual prediction accuracies across dif-
ferent conditions involved, no statistically significant differences were observed be-
tween the five instruments involved in the study. Conversely, a statistically signifi-
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cant difference was observed for the distribution of prediction accuracies across the
three acoustic environments for various conditions involved. A systematic trend is
noted across the three analyzed acoustic environments, wherein prediction accuracies
increase with a decrease in reverberation, improved clarity impression, and better ac-
cess to high-frequency information (assessed using spectral centroid). Based on these
observations, the room acoustic variations incorporated in the study appear to have a
greater influence on source-orientation prediction than the directivity attributes of the
sound sources. Therefore, within the constrained scope of the experiment, it can be
hypothesized that the distinct directivity characteristics, which result in varied spatial
energy distributions from the instrument, are being obscured in orientation perception
by the influence of the room acoustic reflections encountered in real-world conditions.

The role of already established and other potential parameters influencing orien-
tation perception in in-situ performance context was systematically analyzed by ex-
tracting them from BRIRs of each orientation and comparing them afterward against
the corresponding prediction accuracies of the trumpet and trombone, both having a
directivity close to the loudspeaker used for BRIR measurement. While some param-
eters demonstrate significant influence on the prediction accuracies of lateral orien-
tations (left, right), specific parameters previously speculated to affect medial orien-
tation (front, back) in previous controlled experiments also provide cues for medial
orientation in this in-situ investigation. The ILD is shown to be an important factor
for the orientation perception of lateral samples involved in this study, which is con-
sistent with previous findings. The increase in the C80 parameter, reflecting stronger
early reflection compared to late reverberation, was also found to improve the orien-
tation perception, further supporting the observation regarding ILDearly. Additionally,
an increase in IACCearly, indicating a focused and localized source perception, seems
to positively enhance orientation perception.

For medial orientations, consistent with previous observations, the DRR is ob-
served to provide cues for distinguishing between back and front orientations. Ad-
ditionally, the spectral centroid value assessed from the direct sound, which reflects
the spectral tilt of the direct sound between front and back orientations, appears to
provide cues for distinguishing front and back orientations. However, certain obser-
vations point towards the multidimensionality of the orientation perception judgment.
Factors such as ILD cues arising frommedial orientations due to specific room acoustic
reflections in in-situ conditions, access to high frequencies from rear room acoustic re-
flections in the back orientation, etc., appear to challenge the orientation predictability
of samples from medial orientations. Therefore, it necessitates future research to in-
vestigate the orientation perception as a multi-faceted problem by analysing the inter-
relationship and contribution of involved parameters.

While this investigation has limitations due to incorporating steady source and
static listening conditions, it offers the first step in analyzing the important factors
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that influence orientation perception in in-situ conditions. This investigation shall
be further extended by incorporating dynamic sources and receivers that resemble
real-world conditions and analyzing the contribution of the individual parameters dis-
cussed in this investigation in the orientation perception judgment. Given that this
investigation integrates the ecological performance of diverse musical instruments in
realistic performance spaces for the first time in orientation perception, it offers valu-
able insights into music instrument arrangement, musical recording techniques, au-
ralization, communication acoustics, and related areas.
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Chapter 6

Directivity perception in room
acoustic environments

Room acousticians often use electro-acoustic sources, which possess simplified direc-
tivity characteristics, for the playback of musical instrument recordings to know the
‘sounding of the room’. In a sophisticated manner, loudspeaker orchestras, in which
the instruments were represented as a combination of different loudspeakers, were
used for the perceptual evaluation of concert halls and acoustic measurements. How-
ever, in these cases, the natural/realistic impression and the perceptual similarity of
these electro-acoustic substitutions to the real instruments are not well-explored yet.
By analysing the similarity and naturalness perceived in the sound samples recorded
from the real instruments and electro-acoustic counterparts in different acoustic envi-
ronments, this chapter aims to investigate the perceptual quality of sound fields pro-
duced by electroacoustic sources and thereby understand the perceptual relevance of
the dynamic directivity of the musical instruments in in-situ conditions. Morevoer, a
potential statistical modeling approach is also introduced for assessing the perceived
similarity between real instrument and electroacoustic sources by incorporating the in-
situ binaural recordings. A part of the content presented in this chapter is reproduced
from the following research article with the permission of the Deutsche Gesellschaft
für Akustik e.V:

J. Thilakan, W. Buchholtzer, M. Kob, "Evaluation of subjective impression of instru-
ment blending in a string ensemble", Fortschritte der Akustik- DAGA, Vienna, (2021).
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6.1 Materials and methods

6.1.1 Collection of sound samples

This investigation utilizes the in-situ binaural recordings of five different musical in-
struments (trumpet, trombone, violin, saxophone, and flute) having unique directivity
features, from various room acoustic conditions, as presented in Chapter 5. Almost all
these instruments show omnidirectional behavior roughly up to 500Hz, and distinctive
complex directional shapes above this frequency range [16]. Whereas the instruments
like trumpet and trombone show less complex but highly directive radiation patterns
for high frequencies, instruments like the flute and saxophone show relatively com-
plex directivity patterns for high frequencies due to the multi-pole source radiation
behavior. The same trend is seen in the violin which exhibits highly complex radiation
characteristics due to its vibrating body (The specific directivity characteristics of each
instrument are explained in detail in Section 1.2.3).

In addition to these musical instruments, two electro-acoustic sources, Neumann
KH120A and Outline Globe Source Radiator, with entirely distinct directivity charac-
teristics were chosen as the electro-acoustic counterparts of these instruments. Neu-
mann KH120A (abbreviated as ‘KH120’ in this study), a commonly used studio mon-
itor speaker, consists of a 5.25" woofer and 1" tweeter with a frequency response of
52Hz–21 kHz (± 3 dB), and it exhibited a directional characteristic similar to a trum-
pet, especially for mid and high frequencies [147]. The Outline Globe Source Radiator
(abbreviated as ‘GSR’) consists of 12 individually driven loudspeakers with a frequency
range of 90Hz–12.5 kHz, and it is intended to be used for room and building acoustic
measurements. The GSR exhibits omni directional characteristics until approximately
2 kHz [162]. GSR gives more complex directivity shapes above this frequency range,
but still, it satisfies the ISO 3382 required for an omnidirectional source [37].

As detailed in Chapter 5, the performance of the instruments was carried out in
three room acoustic environments characterized by unique room acoustic properties,
including studio-1 of Erich Thienhaus Institute (with a volume of 110 m3), Brahmssaal
of HfM Detmold (775 m3), and Sommertheater Detmold (2930 m3). The room acous-
tic parameters of these environments measured with ISO 3382-1 standards [37] are
provided in Table 5.1. In a pilot test on the perceptual impression across the four
orientations, the right orientation with respect to the listeners was observed to be per-
ceptually closer to the back orientation. Consequently, to minimize the number of
samples for comparison, the front, back, and left orientations with respect to the lis-
teners, which are observed to have perceptually unique sounding impressions across
the three rooms, were chosen for this analysis, while the right orientation was dropped
out from the further analysis (these source orientations in the three rooms are illus-
trated in Figure 5.1). The bell opening in the trumpet, trombone, and saxophone, the
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embouchure hole of the flute, and the f-hole of the violin were considered to be the
main radiating acoustic centers. These acoustic centers were maintained at a specified
source location for the entire recording session. Since directivity patterns of musical
instruments are a function of frequency and it is observed to have dramatic changes
over the performing range of an instrument [16], as mentioned in Chapter 5, the instru-
ments performed dedicated compositions (provided in Appendix B) which covered the
whole pitch range of the instrument, with an expectation to excite most of the possible
variations in the directivity patterns.

A DPA 4099 clip-on microphone attached to the musical instruments (positioned
towards the bell opening of the brass instruments & saxophone, near to embouchure
hole in flute, and close to the f-hole on the violin) was used to record the instru-
ment signals with minimum room acoustic contribution. Although the DPA micro-
phone recordings had exhibited a minimal room acoustic contribution, noises from
the breathing of musicians, scratching of the bow, etc, were present in it, consequently
also in the playback recordings as well. In addition, in certain environments, the binau-
ral recording had background ventilation noise as well. Therefore, a smooth high-pass
filter centered around 200Hz was applied to all samples to reduce these noisy compo-
nents. These processed signals were used for the playback through the electro-acoustic
sources. During the playback of the signals, the KH120 was also kept at the specific
orientation corresponding to the orientation of the instrument in the particular sam-
ples whereas no rotation was performed in the case of GSR. Neumann KU-100 binaural
head [116] placed at the far-field of the room (as illustrated in Figure 5.1) recorded the
resultant sound field of the real & electro-acoustic sources.

Since the goal of this study is regarding the overall perception of the ‘dynamic
directivity’ of instruments during the performance, but not the static directivity pattern
of instrument tones, the reverberation tail in the samples is cropped, and smooth fade
in and fade out filters were added to the samples. Finally, the loudness level of each
group containing one real and two electro-acoustic samples (one particular instrument
in a specific room at a definite orientation, and its corresponding two electro-acoustic
counterparts) was manually equalized in REAPER. Moreover, the high-pass filter at
200Hz was also applied to the real instrument performance recordings, for the direct
comparison with the resynthesized recordings.

Description of the listening test
A dedicated application under the framework of MATLAB’s App Designer platform
was created for the performance of the listening test; the Graphical User Interface of
the application is given in Figure 6.1. 13 participants (4 female, 9 male) consisting of
Tonmeisters, sound engineers, and professional musicians participated in the listening
test. All of the listeners had undergonemusical and ear training, and are experienced in
critical listening. Moreover, they were either trained or familiar with the instruments
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chosen in this study. Due to this reason, no special training/familiarization session was
conducted prior to the listening test to evaluate the sound of real instruments.

Figure 6.1: User Interface of the Listening test application

The application consisted of 45 trials (5 instruments x 3 rooms x 3 angles of orien-
tations), and each trial included a group of three audio files which are named ‘Sample
A’, ‘Reference’, and ‘Sample B’ as shown in Figure 6.1. The recording of the real instru-
ment was always assigned at the ‘Reference’ button, whereas the samples from KH120
and GSR corresponding to the given reference were randomly assigned to Sample A
and Sample B. In order to reduce the direct comparison due to memory of listening,
the order of the 45 audio groups was randomized in the test for each participants.

The listeners were not aware of the characteristics of the samples i.e, they didn’t
know that two of the three samples were playback through loudspeakers. But they
were informed that there could be different orientations of the instruments possible
(instruments might not always pointing towards the listeners) between different au-
dio groups. For each trial, the listeners were asked two aspects; (1) to independently
rate the naturalness (realism) of the instrument for each of the three audio samples on
a scale of 0 to 10 (a high value corresponds to a high natural impression), (2) to rate the
similarity of the sounding impression between Sample A & Reference, and Sample B &
Reference on a scale of 0 to 10 (high value corresponds to high similarity in sounding).
The listeners had the choice to perform the test remotely, listen to the samples many
times, and also to pause and resume the test at any moment they needed. Since the au-
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dio files were binaural, headphones were used to perform the test, and approximately
30 to 45 minutes were taken to complete the listening test.

6.1.2 Similarity estimation modeling procedure
Similar to the classification modeling procedure discussed in Chapter 3, the model-
ing attempt proposed in this chapter to assess the perceptual similarity between the
binaural samples of real instrument and electroacoustic counterpart utilized Mel Fre-
quency Cepstral Coefficients (MFCCs) as the input feature. This is because of its wide
usage in different areas such as musical instrument recognition [125], speech recog-
nition [120; 121], speaker identification [122], and so on. Additionally the Principal
Component Analysis (PCA) [132] was utilized as the feature transformation method
to project the higher dimensional MFCC data into a lower dimensional space by re-
taining the important information. The process of extraction of MFCC features, and
the method of PCA transformations are described in section 3.1.2.

The perceptual test on similarity analysed 90 pairs of sound samples, comprising
45 samples of instrument performances (5 instrument × 3 rooms × 3 orientations) re-
produced via two electroacoustic counterparts. For each of the 90 pairs of samples, the
silent regions at the start and end of the audio samples were removed, and the first
14 MFCCs [128] were extracted from each channel of the binaural recording for every
100 ms of the audio signal with an overlapping length of 50 ms using a Hamming win-
dow. Subsequently, for each channel of the binaural audio file, MFCC feature matrices
from the real instrument and electroacoustic source were concatenated, and the PCA
was performed on the concatenated matrix. After the PCA transform, the transfromed
MFCC features were dissassociated for the two sources, and the first three principal
components of the transformed features were utilized afterwards for similarity esti-
mation.

As followed in Chapter 3, the centroids of the data distribution (i.e., the Eu-
clidean coordinate which corresponds to the arithmetic mean of data points across
the dimensionality-reduced feature space) was estimated for each channel of the bin-
aural files of the real instrument and the electroacoustic source using the first three
principal components. The Euclidean distance between the centroids of the two sound
samples was estimated for each channel, and their mean value was used as a metric
for the similarity estimation model. In this perceived similarity estimation modeling,
if the Euclidean distance between the pair of sound samples is relatively lower, it is
hypothesized that the two samples possess a high similarity, and vice-versa. The mean
value of the similarity rating averaged across 13 listener ratings was used as the other
input variable in this study. The process of estimation of Euclidean distance on the
PCA transformed lower-dimensional MFCC feature space is repeated for the 90 pairs
of samples, and their corresponding Euclidean distances were estimated and compared
against the corresponding perceived similarity ratings.
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6.2 Results and discussion

6.2.1 Naturalness and similarity perception

The variation of the naturalness rating of the real instrument (player) and two electro-
acoustic sources in different room acoustic environments is shown in Figure 6.2. To
have a generalized view of the room acoustics’ influence on the sounding impression
of sources with distinct directivity, responses from three different source orientations
were considered here. Asmentioned above, the front, back, and right orientations were
observed to give distinct perceptual impressions due to the differences in direct sound,
strong early reflections, and late reverberation. By considering the three different ori-
entations of instruments in one specific room as unique observations, the distribution
of each sound source in one particular room in Figure 6.2 consists of 39 independent
observations (13 listeners x 3 trials).

The difference in the distribution of naturalness between the real instrument and
electro-acoustic sources is observed to vary between the instruments and the acoustic
environments. The real instruments are observed to possess a higher naturalness than
the electro-acoustic counterparts. However, in specific cases, electro-acoustic sources
exhibit a naturalness rating distribution similar to that of a real instrument, character-
ized by the same median value and a comparable interquartile range (IQR). Addition-
ally, in certain cases, the KH120 and GSRs show a similar distribution of naturalness
ratings with samemedian value and comparable IQR, despite differences in their direc-
tivity characteristics. Looking at the variation of naturalness ratings between rooms, a
relatively lower impression of the naturalness of electro-acoustic sources was observed
in Brahmsaal for instruments like flute and violin, but this trend is not significant in
other instruments. In general, spectral coloration introduced by the close microphone
recrodings may also have an impact on the lower naturalness impression of the syn-
thesized samples. However, further exploration is needed to validate this.

To statistically compare the differences in the distributions of naturalness ratings
among the three groups (real instrument and two electroacoustic sources, each with 39
independent observations) across the 15 different conditions involved (5 instruments
× 3 rooms), the Kruskal-Wallis test [157] was employed. As previously discussed in
chapter 5, this non-parametric alternative to one-way Analysis of Variance (ANOVA)
was chosen here due to the violation in the normality condition, as confirmed by the
Shapiro-Wilk test [149]. The results suggest that, out of the 15 conditions, 9 show
statistically significant differences in rating distributions at a significance level of 5%,
with six conditions exhibiting differences among all three groups and three conditions
where one group differs from the other two. However, for the remaining 6 conditions,
the test does not provide statistical evidence to conclude that the three distributions
are different, at a significance level of 5%. These conditions include trombone and
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Figure 6.2: Distribution of naturalness ratings of the sound sources in different acous-
tic environments; (a) Recording studio, (b) Sommertheater, (c) Brahmssaal (39 obser-
vations in each condition).
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trumpet in recording studio (p = 0.349, 0.838, respectively), flute, trombone, and trum-
pet in Sommertheater (p = 0.09, 0.072, 0.918, respectively), and trumpet in Brahmssaal
(p = 0.546). While this does not prove that the null hypothesis (the three groups have
same distribution) is true, rather this supports the argument that the observed distri-
butions of naturalness ratings in these conditions can be comparable, given the lack of
strong statistical evidence for a difference in the distributions.

Figure 6.3 shows the variation in the similarity ratings between electro-acoustic
sources and real instruments in different room acoustic environments (39 observations
for each instrument in a room). While the KH120 mostly exhibits relatively higher
distributions, the GSR and KH120 show comparable similarity rating distributions in
many conditions characterized by the same median value and overlapping IQR, across
different instruments with diverse directivity characteristics. Therefore, the distinct
directivity characteristics between the electroacoustic sources do not appear to play a
significant role in the similarity ratings.

To analyze the statistical differences in the similarity rating distributions of the
two electroacoustic sources against real instruments in each condition, the Mann-
Whitney U test [141] was performed. This non-parametric alternative to Student’s
t-test was chosen due to violations of normality in the rating distributions (validated
using Shapiro-Wilk test [149]). The Mann-Whitney U test was conducted on the pairs
of distributions (each with 39 independent observations) across 15 different conditions.
The results did not provide strong statistical evidence to conclude that the two groups
are significantly different at the 5% significance level in any of the conditions. While
this does not confirm that the pairs of distributions are similar, it supports the initial
argument that the two distributions of similarity ratings can be comparable, given the
lack of strong statistical evidence for a difference.

Given that the input signal, the room acoustic environment, and the loudness were
kept the same, a major difference in the sounding impression between the electro-
acoustic sources is expected due to their distinct radiation characteristics. Yet, the
perceptual evaluation reveals that the two sources are observed to have comparable
distributions of similarity ratings in many conditions. As mentioned earlier, instru-
ments like trumpet exhibits similar radiation characteristics to that of KH120 that is
far different from GSR [147]. Yet, no major difference was observed in the distribution
of the similarity ratings in the KH120 and GSR when compared to the real trumpet
recording in the Studio and Sommertheater. This suggests that the difference in direc-
tivity of sound sources gets obscured in specific acoustic environments.

Examining variations across room acoustic environments, a slight reduction in
the overall similarity ratings for instruments is observed in Brahmssaal. Additionally,
while electroacoustic sources receive relatively higher ratings for instruments like the
trumpet, instruments like the violin tend to have lower ratings. These observations
may be influenced by the orientation of the sound source. Therefore, future studies
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Figure 6.3: Distribution of similarity of the electro-acoustic sound sources with the real
instrument at (a) Recording studio, (b) Sommertheater, (c) Brahmssaal (39 observations
in each condition).
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will further investigate the effects of source directivity, room acoustics, and orienta-
tion angle on the perceived similarity between instruments and their electroacoustic
counterparts.

6.2.2 Similarity modeling result

The Euclidean distances between the centroids of two samples in the PCA-transformed
MFCC feature space was estimated for the two channels of the binaural recording of
a real and electroacoustic sources. The mean value of Euclidean distance estimated
for the left and right channels was calculated for the 90 pairs of samples having a real
instrument an electroacoustic counterpart. The variation of mean value of perceived
similarity ratings against the mean Euclidean distance measure for these 90 samples
is presented in Figure 6.4. In order to have a better perspective on the viability of this
approach, the ‘extreme’ sound samples that possess high and low similarity ratings are
highlighted using the red color.

Figure 6.4: Variation of the similarity ratings of sound samples against their corre-
sponding Euclidean distance, estimated from PCA transformed MFCC feature space
for 90 pairs of sound samples involved in the study (The 25% of samples with the high-
est similarity ratings and the 25% with the lowest ratings are highlighted in red).

The results suggest a negative relationship between the similarity of sound sam-
ples and the derived Euclidean distances from the PCA transformed MFCC features-
pace. Though some data points with similarity ratings between 5 and 7 exhibit outlier
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Figure 6.5: Cluster distribution of PCA transformed MFCC features for (a) a sample
with low similarity rating of 3.76 and Euclidean distance of 3.27, (b) a sample with
high similarity rating of 7.91 and Euclidean distance of 0.41 (red and blue represents
data points of the real instrument and electroacoustic source respectively, with the
spheres with specific colors denoting their centroids).
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behavior, deviating from this negative relationship and potentially limiting its gen-
eralizability; in contrast, the most extreme samples (highlighted in red in Figure 6.4)
consistently demonstrate a negative correlation, supporting an overall negative trend.
This demonstrates the potential of a modeling approach to assess the perceptual sim-
ilarity between binaural sound samples of diverse musical instruments captured from
in-situ conditions having unique room acoustic characteristics.

As a visual representation of the transformedMFCC featurespace, Figure 6.5 shows
the cluster distribution PCA transformed MFCC features derived from every 100 ms
time window of real instrument and electroacoustic source. Two particular source
pairs having very high and very low similarity ratings (7.91, 3.76 respectively) are pre-
sented here by plotting the data points of the transformed MFCC feature space using
the first three principal components, and highlighting the centroids of the two sound
samples (red sphere corresponds to the centroid of real instrument data, while blue
sphere corresponds to the electroacoustic source data). According to the previous ob-
servations, the highly dissimilar pair of samples are shown to have separated distribu-
tions of data points with relatively distant centroids. On the other hand, for a highly
similar pair of sound samples, the data points of the two samples are overlapped, and
the centroids are closely spaced.

While this modeling approach is basic, and the trends are clearly observable for
extreme samples, it may not be generalizable. However, this approach establishes a
basis to explore further on modeling the binaural similarity between sound samples
even for in-situ conditions with different acoustic conditions.

6.3 Summary

The perceptual differences in the sounding impression due to the dynamic directivity
of real instruments and their electro-acoustic counterparts were analyzed in terms of
naturalness and similarity ratings. Although the real musical instrument was rated
to be more natural in most cases, the electro-acoustic sources also exhibited similar
naturalness ratings to that of a real instrument in specific acoustic environments. Even
if considering the colouration difference that can occur in close-miking, the electro-
acoustic sources with distinct directivity patterns showed a similar distribution of the
naturalness rating for a highly directive instrument like a trumpet.

When it comes to similarity ratings, although a rudimentary approximation of a
real instrument by an electroacoustic counterpart mostly does not achieve perceptual
closeness to the real instrument, certain acoustic conditions–characterized by room
acoustic attributes and relative source orientation–tend to obscure the large directiv-
ity differences between the sound sources. An interesting thing observed in this study
is that, while keeping the input signal, room acoustic environment and loudness to be
the same, no major perceptual differences were observed between the recordings of
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the two electro-acoustic sources in specific acoustic environments, despite their sig-
nificantly different radiation characteristics. Even for a highly directional instrument
like a trumpet, this trend remains valid. This indicates that the large differences in di-
rectivity between the real and electro-acoustic sources is somehow masked in certain
acoustic environments. To validate this observation, further studies shall be performed
by incorporating advanced listening tests withwide range of verbal attributes of sound,
analyze variations in the (spatial) room impulse responses of different sources in tem-
poral, spectral and spatial domain for in-situ performance conditions.

By utilizing MFCC features extracted from the sound samples and performing PCA
feature transformation technique, a modeling approach to assess the perceived simi-
larity between binaural audio samples is proposed. Despite its simple and basic nature,
the initial result of the model demonstrate noticeable trend for extreme samples with
very low and very high similarity impressions. Although the trend is not generalizable,
the early-stage modeling idea shall be explored further by utilizing advanced methods
using better distance measures and improved features.
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Chapter 7

Relevance of high-resolution
directivity in ensemble auralization

Given that physically accurate sound field (re)synthesis necessitates detailed directiv-
ity information of sound sources, substantial efforts have been invested toward captur-
ing the high resolution directivity of sound sources for virtual acoustic applications.
However, the perceptual significance of the high spatial and spectral resolution of the
directivity of sound sources remains unclear. When it comes to practical applications,
instead of the high-resolution measurements, incorporating a perceptually significant
representation of a sound source directivity could facilitate the reduction of computa-
tional efforts in a perceptually plausible modeling of the source for auralization. This is
particularly important when it comes to the auralization of ensemble performances in
virtual reality applications, as multiple sound sources need to be rendered simultane-
ously in real time. As a first step towards this goal, this study explores the perceptual
relevance of spatial resolution of directivity for different numbers of sound sources
(from 1, 2, to 5). This is carried out by analyzing the perceptual similarity of sound
samples created with various spatial resolutions of directivity. This study also em-
ploys two extreme cases for the room acoustic environment (echoic and anechoic) as
well as the instrument type (trumpet with ‘unidirectional’ characteristics, and violin
with ‘multi-directional’ characteristics) to explore their role in directivity perception.
The content of this chapter is reproduced from the following research work:

J. Thilakan, A. C. Marruffo, L. R. Paz, D. Ackermann, T. Grothe, M. Kob. "Per-
ceptual relevance of high-resolution directivity in the simulation of musical ensembles"
(manuscript under preparation).
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7.1 Materials and methods

The perceptual relevance of high-spatial-resolution of directivity patterns in the sim-
ulated acoustic environments was tested by perceptually comparing sound samples
having directivities with different degrees of spatial resolutions, in the context of an
ensemble performance with varying numbers of constituent sound sources (1, 2, and
5). This was done by considering a 15th order Spherical Harmonics (SH) representation
of directivity data as a reference and comparing it against lower resolutions created by
the truncation of SH. Binaural Room Impulse Responses (BRIRs) of individual sound
sources to the receiver were created by varying the directivity filters with different
degrees of resolutions in both echoic and anechoic conditions using a GA-based room
acoustic simulation software. Binaural audio samples of each source with varying di-
rectivity resolutions were generated by convolving these BRIRs for individual sources
with anechoic recordings of individual instruments. Following this, except for the
single instrument performance scenario, these binaural audio files from multiple in-
struments were rendered together as a stereo file to create a binaural audio sample of
ensemble performance in a particular acoustic setting. A MUSHRA (MUlti Stimulus
test with Hidden Reference and Anchor) test was employed to compare the similarity
of a set of sound samples from a specific performance condition (featuring a specific
number of sources in either echoic or anechoic environment), generated with differ-
ent degrees of spatial resolution of directivity, against the reference sample having the
high-spatial-resolution directivity. The preparation of sound samples, including the
anechoic source signal recording, directivity processing using SH representation, and
room acoustic simulation, are detailed in the coming section. Additionally, the details
of the perceptual evaluation using the MUSHRA test are elaborated.

7.1.1 Preparation of audio samples

Recording of sound stimuli

Given that the study examines an ensemble performance with a maximum of five
sources, five trumpets and five violins were individually recorded in the anechoic
chamber of the Detmold University of Music. The DPA 4099 Core clip-on microphones
were employed to capture the individual sources, by positioning them near the bell of
the trumpet and the bridge of the violin. Thesemicrophones have a frequency response
of 20Hz – 20 kHz with an effective frequency range of 80Hz–15 kHz (± 2 dB) at 20 cm
distance, and possess a super-cardioid directivity [113]. Moreover, the potential chance
of the movement of the source are not expected to influence these recordings. Twomu-
sicians, specializing in trumpet and violin, were hired for recording purposes, and they
were asked to perform a dedicated musical piece utilized in the previous studies (see
Appendix B), which covered the entire pitch range of these instruments. Covering the
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whole pitch range of the instruments is expected to excite the possible variations in
the directivity filter employed in the simulations. As an effort to achieve a blended
ensemble sound, the musicians were asked to perform the piece with maximum con-
sistency across the different instruments, and they utilized a metronome to maintain
the temporal synchrony in each take with different instruments. Despite lacking the
intrinsic attributes of ensemble sound evolved by joint performance strategies and
acoustic feedback, these anechoic recordings of individual instruments are expected
to be ‘clean’ and noise-free, which is particularly essential for this study. A high-pass
filter at 150 Hz was applied to the selected samples of individual instrument record-
ings to minimize the noises from breathing, etc., and these samples were subsequently
utilized for auralization purposes.

Directivity representation using Spherical Harmonics

The Spherical Harmonics (SH) represent solutions of a Helmholtz equation in the
spherical coordinate system, and it is commonly used to represent functions vary-
ing on a sphere. Since higher-order spherical harmonics are shown to efficiently and
accurately model a spatial function using a compact representation, it has been widely
utilized in the field of spatial audio and virtual reality acoustics for diverse applications
such as the representation of the directivity of sound sources, modeling theHRTF of the
receiver, sound field decomposition, and many more [163; 164; 165; 166]. The normal-
ized spherical harmonic base functions Y m

l that are mutually orthogonal, are defined
as,

Y m
l (θ, ϕ) =

√√√√2l + 1
4π

(l − m)!
(l + m)!P

m
l (cos(θ))eimϕ (7.1)

where θ, ϕ represent the azimuth and elevation of the spherical coordinates, and
the P m

l represents the associated Legendre polynomial with degree l (l=0,1,2..) and
order m (m=-l...+l). A spherical function, f(θ, ϕ), that is assessed on the surface of a
sphere can be represented as a weighted sum of spherical harmonic base functions:

f =
∞∑

l=0

l∑
m=−l

am
l Y m

l (7.2)

where with am
l being the weights of the corresponding SH functions. Therefore,

any complex spatial function can be represented as a linear combination of neces-
sary higher-order spherical harmonic functions with appropriate weights. In practical
situations, the representation of directivity of sound sources sampled using q num-
ber of spatially distributed measurement points, which estimate the pressure function
p = f(θq, ϕq), can be representedwith anN th order SH functions using a Least-Squares
method [163]:
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f(θq, ϕq) =
N∑

l=0

l∑
m=−l

am
l Y m

l (θq, ϕq) (7.3)

where the maximum value of N is chosen such that (N + 1)2 ≤ q. This can be
represented in a matrix form:

f = Y a (7.4)
where

f =


f (θ1, ϕ1)
f (θ2, ϕ2)

...
f (θq, ϕq)

 (7.5)

with Y of dimension q×(N + 1)2 having q number of equations with (N + 1)2

unknown variables

Y =


Y 0

0 (θ1, ϕ1) Y −1
1 (θ1, ϕ1) ...Y N

N (θ1, ϕ1)
Y 0

0 (θ2, ϕ2) Y −1
1 (θ2, ϕ2) ...Y N

N (θ2, ϕ2)
...

Y 0
0 (θq, ϕq) Y −1

1 (θq, ϕq) ...Y N
N (θq, ϕq)

 (7.6)

and

a =


a0

0
a−1

1
...

aN
N

 (7.7)

A solution to this from Least-squaremethodwith (N+1)2 < q, an over-determined
condition [163; 166], is given to be

a = Y †f (7.8)
where Y † is the pseudo-inverse. The solution when (N + 1)2 = q [166] is given to

be ,

a = Y -1f (7.9)
While an accurate reproduction of a high resolution directivity can be achieved

with an adequate high SH order, truncation of the SH order (i.e., reducing the N value)
reduces the complexity by employing a smaller number of SH basis functions and their
associated weights.
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Processing of directivity data

Two instruments involved in the study, trumpet and violin, exhibit contrasting direc-
tivity characteristics. The bell of the trumpet serves as the main radiation point, ex-
hibiting omnidirectional characteristics up to 500 Hz, and then radiating mainly along
the axis of the bell, showing rotational symmetry relative to the bell axis [16; 58]. Un-
like the trumpet, the violin lacks a defined shape for directing the sound energy, leading
to intricate directional characteristics. The vibrating plates, with different points on
the plates vibrating at varying amplitudes and phases, and the f-hole of the instru-
ment mainly contribute to the directivity of violins [16; 54]. While the violin exhibits
omnidirectional characteristics up to approximately 600 Hz, it produces complex di-
rectional patterns for higher frequencies which are primarily radiated from the instru-
ment’s top plate [16] (further details on the directivity attributes of these instruments
are discussed in section 1.2.3).

Figure 7.1: Visualization of directivity patterns of trumpet created with truncation at
different SH orders (based on the data from [63]).

The high spatial resolution directivity data of these instrumentswere obtained from
the database published by the Spatial Audio Laboratory of Brigham Young University
[63; 64]. Although these directivity data were captured with a 5° angular resolution,
the data published in the repository are derived from a 15th order SH expansion of
these measured data averaged for 1/3rd octave bands. Previous studies on directivity
perceptions with various kinds of sound sources under different acoustic conditions
haven’t reported perceptual differences between samples from a 10th order SH and
higher-orders [90; 91]. Therefore, the 15th order SH representation is considered to be
adequate for serving as a high-resolution reference. Although the Chebyshev quadra-
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turemethodwas employed for the SH expansion of the published data, previous studies
suggest that both the Chebyshev quadrature and the least-square methods exhibit the
same error level up to around the SH order of 35 [163]. Therefore, the Least square
method was utilized in this study for the SH transformation and truncation processes.

The directivity data utilized in the investigation were normalized to 0 dB as the
maximum across all frequency bands. Consequently, because of the omnidirectional
characteristics, the overall energy radiated in low-frequency bands was relatively
higher than in the more directionally focussed high-frequency bands, and it is par-
ticularly valid for highly directional instruments like trumpets. This could potentially
introduce an unnatural spectral coloration in the auralized output. To compensate for
this, a method known as ‘Diffuse equalization’ [167] was employed to normalize the
overall radiated energy across frequency bands. These diffuse normalized directivity
data of the two instruments were afterward utilized for the spherical harmonics trans-
formation. As the directivity data utilized were constrained to the 1/3rd octave bands
from 160-3150 Hz for trumpet and 200-2500 for violin, the directivity of the highest
available octave band in the data was used for the frequency bands above this range,
in the simulations.

Figure 7.2: Visualization of directivity patterns of violin created with truncation at
different SH orders (based on the data from [64]).

The spherical harmonic transform, utilizing the least-square method, was applied
to the diffuse equalized directivity 1/3rd octave band directivity data to generate the 15th
order high-resolution reference for the investigation. Following this, the coefficients
of the 15th order directivity were truncated to obtain lower-order SH shapes that rep-
resent lower-resolution directivity data. For this investigation, directivity filters with
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SH orders 0 (omnidirectional), 1, 2, 4, 7, and 11 were generated by truncation, and later
rendered into OpenDAFF format [168] files for utilization in RAVEN room acoustic
simulation software. The directivity patterns of the chosen SH orders for trumpet and
violin are presented in Figure 7.1 and Figure 7.2 for visual comparison.

Room acoustic simulation

This study utilized RAVEN (Room Acoustics for Virtual ENvironments), a room acous-
tic simulation platform developed for academic purposes [95; 103], for the estimation
of BRIRs from the individual sources to the receiver with varying source directivity
filters. RAVEN is a GA-based hybrid room acoustic simulation platform that integrates
the image source method for early reflections and the ray tracing method for late re-
verberations, and it also incorporates frequency-dependent absorption and scattering
properties of the boundaries (more details on the GA-based simulation is given in sec-
tion 1.2.4).

A simplified model of a chamber music hall (previously utilized in [57]), with a
volume of 1953 m3 and reverberation time of 1.02 s, was chosen as the room acoustic
environment for the ensemble sound auralization. The 3D model of the room acoustic
environment is presented in Figure 7.3. Rather than reproducing a specific acoustic
environment accurately, the objective of this investigation was to analyze the role
of room acoustic reflections within a simplified acoustic environment. Accordingly,
the utilized room acoustic model had a relatively simplified geometry with only three
boundary materials, each having different absorption parameters for the walls, stage
area, and audience area. As reported in [57], the major room acoustic parameter values
(described in the Appendix A) estimated according to the ISO 3382-1 standards [37] are
T20 = 1.02 s, C80 = 4.55 dB, EDT = 1.06 s, G = 12.40 dB, JLF = 0.24, respectively.

The five sound sources on the stage were placed with a separation of 1 meter, and
the middle source (S1) was positioned 1 meter away from the symmetric plane of the
hall to avoid unwanted symmetric effects. The receiver was placed at a distance of
twice the critical distance from the sources to have a better impression of the diffuse
field. Moreover, instead of placing it right in front of S1, it was 1.5 away from the
middle plane to have binaural cues from the sources. Additionally, the height of the
sources and the receiver were kept at 1.7 meters. The HRTF of Fabian HATO [169]
was used to model the receiver, and the different directivity filters with varying spatial
resolutions were utilized to model the sound sources. For each directivity filter of a
particular instrument, the simulation was performed by employing a hybrid algorithm
that combined a second-order image source method and 100,000 rays for ray tracing,
to capture BRIRs from the individual sources to the receiver. The simulations with
the described conditions were performed, and the the BRIRs corresponding to each
directivity filter applied to the five sources were captured in this echoic condition.
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In addition to this, all the boundaries (including the stage and audience area) of
the chamber music hall model were replaced with a material with 100% absorption,
which led to an anechoic environment condition. In this way, while the room acoustic
reflections were eliminated, the spatial attributes such as the source localization and
distance perception remained unchanged in the two conditions, which facilitated fu-
ture comparison on the role of room reflections. The simulations with the above men-
tioned settings were repeated in this anechoic condition, and the BRIRs corresponding
to each directivity filter applied to the five sources were captured.

Figure 7.3: The 3Dmodel of the room acoustic environments (the left image represents
the geometry of the chamber music hall while the right image represents a zoomed
view of anechoic version with all boundaries with 100% absorption, with sources and
receivers denoted as ‘S’ and ‘R’).

Processing of sound samples

BRIRs corresponding to a particular source, with different directivity filters, were con-
volved with an anechoic recording of a specific instrument to generate auralized sam-
ples of the source with different directivity variations. Apart from solo instrument
performance (with S1), for configurations involving two instruments (with S1 and S2),
or five instruments (with S1 to S5), the binaural sound samples from individual corre-
sponding were rendered together into stereo format to create the binaural audio file of
the ensemble performance.

Variations in the room acoustic conditions and the type and number of instruments
involved cause differences in the loudness across the 12 conditions (3 different num-
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bers of sources × 2 different instruments × 2 room acoustic conditions). Along with
the spectral and spatial attributes, the changes in the directivity filter within a specific
condition are expected to produce differences in loudness as well. Therefore, for the
perceptual comparison across these conditions, the loudness levels of reference sam-
ples (SH order 15) across the 12 conditions were normalized to the same loudness level,
and the scaling factor of the reference sample was used to adjust the loudness of other
lower order directivity samples in each condition. In this way, the overall loudness
between the 12 test conditions was maintained to be similar, while the difference in
loudness caused by the different directivity filters in each condition was retained.

7.1.2 Perceptual evaluation
The MUSHRA test was performed using the Web-MUSHRA [170], a web audio API
test platform that is compliant with the ITU-R BS.1534 recommendations [171]. In
contrast to other test designs, the MUSHRA test allows a simultaneous comparison
of a relatively higher number of samples, which is particularly useful in the context
of evaluating different kinds of audio processing methods. The perceptual evaluation
involved a group of 21 participants, consisting of tonmeister students, sound record-
ing engineers, and expert musicians. The participants had musical and ear training
backgrounds and also were experienced in critical listening. Moreover, the ability of
musicians over non-musicians to selectively attend and analyze complex features of
sound, as observed in previous studies [17; 18], qualifies them as expert listeners for
this perceptual evaluation.

The graphical user interface of the WebMUSHRA platform utilized in this study
is presented in Figure 7.7. The test consisted of 12 trials, each corresponding to 12
different conditions involved. In each trial, 7 sound samples with different degrees
of directivity resolution were provided which included samples created with SH reso-
lution of order 0, 1, 2, 4, 7, 11, and the hidden reference with SH order 15. Each trial
featured a separate reference sample button, and the participants were asked to rate the
7 test conditions (including the hidden reference) in terms of the similarity impression
by comparing them with the given reference on a scale of 0 to 100. A highly dissimilar
sample compared to the reference corresponded to a low similarity rating, and vice
versa. The order of trials, and the test conditions in each trial, were randomized be-
tween the participants to mitigate errors from direct comparison and to minimize the
memory retention effects on the ratings.

Following the ITU recommendations, theWebMUSHRAGUI interface allows users
to choose a portion of the samples, listen to it in a loop, and seamlessly switch between
test samples without interrupting the audio playback, etc. Although MUSHRA tests
usually include hidden anchors, typically low-pass filtered versions of reference with
cut-off frequencies at 3.5 kHz and 7 kHz, such anchors were not utilized in this test.
In some of the conditions involved, the perceptual differences between some of the
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samples generated with different directivity filters were very subtle. Consequently,
employing a highly different anchor sample would increase the separation of ratings
between the anchor and the 7 samples, while reducing the separation between the 7
test conditions, resulting in a reduced range of variation of similarity ratings among the
test conditions. A pilot test conducted with the samples and anchor supported these
observations. Given that the test examines the perception of details in the directivity
filter, the condition of no directivity, i.e. omnidirectional source having SH order=0
could be regarded as a lower anchor.

Figure 7.4: The graphical user interface of MUSHRA test.

While the Web-MUSHRA allows hosting the test online, it was decided to perform
the test in a controlled environment with proper guidance to achieve more reliable
results. Therefore, the test was conducted in an acoustically treated room of Erich
Thienhaus Institut, and the binaural samples were presented using Beyerdynamic DT
990 pro closed-back headphones to the listeners. Both verbal and written instructions
on the objective of the test and the test procedure were given to the participants at the
beginning of the test. To make the participants familiar with the test design, calibrate
their hearing, and minimize their initial biases, a training session consisting of 8 trials
(only 1 and 5 sources × 2 different instruments × 2 room acoustic conditions) was
conducted at the beginning of the test with samples of SH order 0, 2, 7, and 15 as ref-
erence. Following this training session, the actual test with 12 trials took place, which
took an average of 30 minutes to complete. At the end of the test, a short question-
naire was presented to the participants to evaluate the features they utilized to judge
the dissimilarity between samples. This included rating the features used in similarity
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judgment—such as timbre, spatial cues, loudness, reverberance, and clarity —on a scale
of 1 to 5, and also proposing any other features they might have utilized.

According to the MUSHRA guidelines, if an assessor fails to spot the hidden refer-
ence for more than 15% of conditions involved in the test (ca. 2 out of 12 conditions),
by providing a rating below 90%, the assessor should be excluded from the test to get
consistent and reliable results. Accordingly, 6 out of the 21 participants were excluded,
and the further analysis was performed using the test responses of 15 participants.

7.2 Result and discussion
The distribution of the similarity ratings of different directivity resolution samples
from 15 participants is shown to be non-normally distributed (validated with the
Shapiro-Wilk test, p <0.05). Therefore, a box plot, which excludes outliers and does
not assume any specific distribution, is employed here for comparison between the
similarity ratings.

Figure 7.5 illustrates the distribution of similarity ratings of trumpet samples of
different spatial resolutions for various numbers of sources under echoic and anechoic
conditions. Across all conditions, the 0th order omnidirectional sample received the
lowest rating and median. Similar to the previous findings, the similarity ratings of
samples significantly increase from 0th order with an increase in the order of SH uti-
lized for directivity filter modeling, reaching a plateau after a threshold with no major
improvement. By attaining a comparable similarity impression close to that of the ref-
erence sample, the truncated SH order at this threshold point is expected to provide a
perceptually plausible representation of the high-resolution directivity reference. Ob-
serving the trend of the median curve across the conditions, it seems that the overall
threshold point is likely around the 4th order, after which slight improvements occur.

Considering the anechoic conditions, from the 4th order onwards, all the conditions
are shown to have a median value surpassing 90. Except for a slight deviation of the
11th order, ratings from the 4th order to the 15th order reference demonstrate reasonably
comparable distributions. Therefore, the 4th order SH representation can be expected
to be sufficient for a perceptually plausible auralization of the trumpet in such a con-
dition. Although details on the sidelobes of the instrument are missing, the relatively
simplified directivity feature of the trumpet, characterized by its main radiating lobe,
is almost present in the 4th order directivity shape, as illustrated in Figure 7.1. There-
fore, the variation in sound from the detailed characteristics of trumpet directivity may
not be necessarily discernible in a reflection-free environment. This observation holds
true across the different numbers of sources (1, 2, and 5), indicating that the increase in
the number of sound sources does not alter the similarity perception across different
SH orders. Therefore, it can be hypothesized that the requirement of directivity reso-
lution needed for a perceptually plausible auralization is insensitive to the increase in
the number of sources involved.
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Figure 7.5: Distribution of similarity ratings of different SH order samples for trumpet:
left and right columns indicate anechoic and echoic conditions, respectively, with the
number of sources increasing from 1 to 2 to 5 from top to bottom.
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The echoic condition exhibits a relatively lower similarity rating distribution com-
pared to the anechoic condition, which is consistent with the observations from previ-
ous studies. Except for a few cases, the median values of the samples under echoic con-
ditions are lower than those in anechoic conditions. Moreover, the interquartile range
(IQR) and whiskers are wider in echoic conditions, indicating a relatively higher vari-
ance in the ratings. Recent studies on directivity modeling in simulated room acoustic
environments indicated a need for higher order detailing of directivity for the simu-
lation of the early-reflection part of the RIR, while an averaged directivity suffices for
the diffuse reflections [71]. Therefore, as speculated in [91], the early reflections could
be the potential reason for this difference, although further investigations are needed
to verify this. Similar to the anechoic condition, no significant changes were observed
between the distributions of similarity ratings for different numbers of sources. Con-
sequently, the hypothesis that the number of sources doesn’t alter the importance of
directivity resolution is being supported in this condition as well. Identifying the per-
ceptually plausible directivity threshold is challenging here due to the non-overlapping
and relatively wider distributions compared to the reference. Based on the median
curve, it can be expected between the 4nd and 7th order, however more sophisticated
listening tests are required to confirm this threshold.

Condition 0th order 1st order 2nd order 4th order 7th order 11th order
1 trumpet in AC <0.001 <0.001 <0.001 0.323 0.251 0.523
2 trumpets in AC <0.001 <0.001 0.016 0.396 0.179 0.151
5 trumpets in AC <0.001 <0.001 0.092 0.304 0.780 0.380
1 trumpet in CH <0.001 <0.001 0.003 0.195 0.138 0.083
2 trumpets in CH <0.001 <0.001 <0.001 <0.001 0.023 0.002
5 trumpets in CH <0.001 <0.001 0.009 0.021 0.075 0.404

Table 7.1: p-values of Mann-Whitney U test comparing similarity ratings of 15th order
reference with lower orders for trumpet samples in Anechoic chamber (AC) and con-
cert hall (CH).

To examine statistically significant differences in the distribution of similarity rat-
ings between the reference (15th order) and lower order samples in each conditions,
the Mann-Whitney U test [141] was conducted. This non-parametric alternative to
Student’s t-test was selected due to violations of normality in the distributions, as
confirmed by the Shapiro-Wilk test (p <0.05). Table 7.1 presents the p-values from
pairwise Mann-Whitney U tests comparing lower-order samples against the 15th order
reference. As observed above, the lower order samples including 0th and 1st order sam-
ples consistently exhibit a significant difference in distribution of ratings compared
to the reference. In anechoic conditions, it is failed to detect statistically significant
difference in the distribution of ratings from the 4th order onward, supporting the ear-
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lier observation that improvements in perceptual similarity ratings become negligible
beyond this order. When it comes to echoic condition (i.e., in the concert hall), while
the 0th, 1st, and 2nd order samples remain significantly different from reference for all
conditions, no clear threshold can be observed here beyond which no statistically sig-
nificant differences are observed, as higher-order samples also yield statistically sig-
nificant p-values. This supports the requirement of relatively higher order directivity
representation for room acoustic environments as compared to anechoic conditions
for perceptually convincing auralization.

The distribution of similarity ratings of violin samples for different numbers of
sources under echoic and anechoic conditions is presented in Figure 7.6. Although SH
order 0 possesses the lowest ratings and the similarity ratings generally increase with
higher orders, unlike the trumpet case, the 0th and 1st order violin samples exhibit im-
proved similarity ratings compared to the reference. While the median values of simi-
larity distributions for SH orders 0 to 4 varied from about 25% to 95% for trumpets, they
converged to about 70% to 95% for violins. This suggests that the perceptual distinc-
tion between the samples is considerably smaller in the case of violins across SH orders
0 to 15. Unlike the trumpet, demonstrating a highly directional beam-like directivity
characteristic at high frequencies (see Figure 7.1), the violin’s more complex directiv-
ity characteristics at high frequencies might bear a relatively better resemblance to its
corresponding truncated SH order 1 and 2 directivities (see Figure 7.2). This could be
the potential reason for the improved similarity of the lowest orders with reference, in
violins. Although identifying the perceptually plausible directivity threshold is chal-
lenging here, mostly the median values from the 4th order onward remain close to or
above 90% across the three different instrument conditions, suggesting the possibility
of the fourth order being the tentative threshold point.

Considering the role of room acoustic reflections, the echoic condition consistently
exhibits lower similarity rating distributions in comparison to the anechoic conditions,
except for some outlier points. These two independent observations from the trum-
pet and violin samples underscore the degradation of similarity ratings by room re-
flections, which is consistent with [91]. Furthermore, no notable trend was observed
among the three different conditions with varying numbers of violins, which remains
consistent across both echoic and anechoic conditions. This supports the earlier ob-
servation that the number of sources does not alter the importance of the directivity
resolution.

Table 7.2 demonstrates the p-values from pairwise Mann-Whitney U tests compar-
ing the distributions of similarity ratings of lower-order violin samples against the ref-
erence across different conditions. Despite having relatively higher similarity ratings
than the trumpet, the 0th and 1st order violin samples remain significantly different
from reference in all source conditions from both echoic and anechoic environments.
In anechoic conditions, except for an outlier, no statistically significant difference was
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Figure 7.6: Distribution of similarity ratings of different SH order samples for violin:
left and right columns indicate anechoic and echoic conditions, respectively, with the
number of sources increasing from 1 to 2 to 5 from top to bottom. 127
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Condition 0th order 1st order 2nd order 4th order 7th order 11th order
1 violin in AC <0.001 <0.001 0.003 0.281 0.079 0.114
2 violins in AC <0.001 0.007 0.057 0.790 0.028 0.255
5 violins in AC <0.001 0.005 0.148 0.128 0.737 0.796
1 violin in CH <0.001 0.003 0.001 0.005 0.075 0.002
2 violins in CH 0.003 0.006 0.089 0.084 0.074 0.035
5 violins in CH 0.003 0.001 0.002 0.017 0.008 0.062

Table 7.2: p-values of Mann-Whitney U test comparing similarity ratings of 15th order
reference with lower orders for Violin samples in Anechoic chamber (AC) and concert
hall (CH).

found for samples from 4th order onward when compared to the reference, support-
ing the possibility of the perceptual threshold being close to the 4th order. However, in
echoic conditions, 4th and higher order samples are also shown to have statistically sig-
nificant difference from the reference, suggesting that a relatively higher-order source
directivity representation is necessary in the presence of room acoustic environments.

The distribution of the ratings for the cues that listeners utilized to assess the dis-
similarity between the given samples and the reference is depicted in Figure 7.7. The
utility of each cue was rated on a scale of 1 to 5, and the results show that the loudness
and the timbre emerge as the most effective cues utilized by listeners in the test.

Figure 7.7: The distribution of ratings of cues utilized to assess dissimilarity between
sound samples.
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7.3 Summary

This study explored the perceptual significance of high spatial resolution of directiv-
ity of instruments within the context of auralizing ensemble performances. This was
carried out by changing the instrument type (trumpet, and violin) and the number of
instruments in the performance (1, 2, and 5) in simulated echoic and anechoic con-
ditions. A MUSHRA test comparing the audio samples created with various degrees
of detailing of the directivity of sound sources, generated by truncated Spherical Har-
monics (SH) orders of high-resolution reference data of 15th order, demonstrated that
a lower-resolution directivity representation could achieve perceptually plausible au-
ralization in comparison to high-resolution directivity data.

The perceptual similarity across different SH order samples when compared to the
reference is observed to be significantly influenced by the inherent directivity char-
acteristics of the instruments. While the 0th and 1st order samples were significantly
different from the higher order and reference samples of the trumpet, they demon-
strated an improved similarity to the higher orders in violins. Furthermore, the lower-
order samples in echoic conditions were shown to have relatively lower similarity to
the reference as compared to the anechoic environment. This observation suggests
that the presence of room acoustic reflections highlights the difference in the directiv-
ity between the sound sources, and thereby reduces the perceived similarity between
them. This consistent trend, observed across the two independent instruments, is in
agreement with previous research findings.

When it comes to the variations in the number of sources involved, the results sug-
gest that the increase in the number of sources from 1 to 5 does not seem to influence
the similarity perception ratings across the different SH orders. This trend was consis-
tent for both the trumpet and violin under both echoic and anechoic conditions. These
observations suggest that the requirement of relatively lower-order directivity resolu-
tion needed for a perceptually plausible auralization is insensitive to the increase in
the number of sources involved. This underscores the importance of directivity in the
auralization of an ensemble performance.

A truncated SH order that can deliver a perceptually plausible auralization was ex-
plored here by analyzing the threshold point where the similarity ratings saturate in
comparison to the reference. In the case of the trumpet in anechoic condition, the 4th
order SH sample can be considered to be the threshold showing a comparable distribu-
tion to the reference, with no significant improvement in similarity ratings observed
beyond this. However, in other scenarios, proposing a clear threshold point is chal-
lenging, thus necessitating advanced perceptual evaluations and statistical analysis to
estimate the threshold. The threshold value could be a function of the characteristic
feature of the instrument and also influenced by the room acoustic attributes. However,
as stated above, the number of instruments doesn’t seem to influence it. Consequently,
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although the high spatial resolution is not a requisite for a perceptually plausible aural-
ization, the minimum lower-order resolution representation of an instrument should
be utilized in the ensemble auralization with multiple instruments.

The MUSHRA test carried out as an exploratory investigation facilitated the uti-
lization of a higher number of sound samples across different conditions. Based on the
insights gained from this test, other test designs, such as adaptive testing or ABX test
on a limited set of samples that are perceptually very close, shall be utilized to advance
further by precisely estimating the threshold point. Moreover, by advancing from the
simplified room acoustic models, the test should incorporate more sophisticated room
acoustic simulations that better match real-world conditions. Performing this percep-
tual evaluation on a wide range of room acoustic environments can provide a better
understanding of the room acoustic attributes that emphasize the dissimilarity in the
directivity.
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Chapter 8

Role of room acoustics in blending
perception

While the phenomenon of blending remains a subjective attribute with considerable
importance in room acoustic research, only a limited number of studies have explored
the direct relationship between room acoustic attributes and perceived blending. Hav-
ing said that, the absence of source-level blending considerations and limited variations
in acoustic environments further constrain these studies. Therefore, several essential
questions need to be answered to have a thorough understanding of the formation
and evolution of blending. Firstly, it is uncertain if room acoustic reflections always
enhance blending, and the extent to which the acoustic environment contributes to
samples with different degrees of source-level blending remains unresolved. Further-
more, a comprehensive investigation is required to understand the role of different
room acoustic attributes in the blending perception and fine-assess the distinct con-
tributions of source-level blending and room acoustics to the overall perceived blend-
ing. This chapter attempts to answer these questions by performing a controlled ex-
periment in which musically realistic in-situ recorded sound samples of two violins
having contrasting degrees of perceived source-level blending were auralized through
different simulated room acoustic environments for the perceptual analysis of overall
blending. Based on the perceptual test ratings, this study proposes a computational
modeling approach to evaluate the blending of sound sources in a musically realis-
tic performance setting through the estimation of the distinct contributions made by
instrument-level blending and the room acoustic environment. The content of this
chapter is reproduced from the following research article:

J. Thilakan, B.T. Balamurali, O.C. Gomez, J.M. Chen, M. Kob, "Exploring the role of
room acoustic environments in the perception of musical blending," Journal of the Acous-
tical Society of America 157.2 (2025), pp. 738-754, https://doi.org/10.1121/10.0035563 (Li-
censed under a Creative Commons Attribution (CC BY 4.0) license).
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8.1 Materials and methods

8.1.1 Data acquisition procedure

Simulation of room acoustic environments

This study utilized ODEON version 16, a GA-based room acoustic simulation software,
to generate virtual room acoustic environments. Since ODEON incorporates state-of-
the-art room acoustic simulation techniques (described in section 1.2.4) and yields reli-
able results, it has been employed in many auditory perception-related investigations
for simulating acoustic environments [68; 99; 100].

The architectural features of performance spaces have been shown to influence
the subjective sensation and judgment of acoustic environments[41]. Therefore, the
acoustic environments prepared for the study were generated by diversifying archi-
tectural, and acoustical attributes such as room geometry, absorption characteristics
of the rooms, and the receiver position, with the aim of eliciting distinct perceptual im-
pressions of blending. Four rooms with rectangular geometry (shoebox shape) were
selected for this study. Figure 8.1 demonstrates a schematic diagram of the geometry of
four roommodels incorporated in this study. These rooms had an approximate volume
of 500 m3 (length×width× height as 10×10×5m), 5000 m3 (33×14×11m), 10,000 m3

(36×20×14m), and 15,000 m3 (36×29×14m) respectively which falls within the phys-
ically acceptable range of volume for realistic music performance spaces. These rooms
will be referred to as ‘R1’, ‘R2’, ‘R3’, and ‘R4’ respectively henceforth. To make the
rooms soundmore realistic and convincing, a stage block of height 100 cm (highlighted
as pale green regions in Figure 8.1) and an audience block of height 50 cm (highlighted
as pale red regions) were incorporated into each of the rooms according to the available
size.

To further diversify the acoustic environments, three different variations of each
roomwere generated by changing the absorption coefficients of the wall surfaces from
realistically feasible low, medium, and high values. These three variations will here-
after be referred to as ‘wet’, ‘normal’, and ‘dry’ versions, in the given order. Table
8.1 shows the absorption coefficient values implemented for the walls and floor in the
three acoustic variants for different frequency bands (higher frequency bands greater
than 8000 Hz have same values as 8000 Hz). Typically used absorption and scattering
coefficients were applied for the audience area to achieve a realistic listening situation,
and they were maintained to be the same in all acoustic variations.

Each of the simulated acoustic environments contained two sound sources (re-
ferred to as ‘S1’, and ‘S2’) and two receivers (close/near receiver referred to as ‘c’, and
far receiver as ‘f’), and their positions are depicted in Figure 8.1. The built-in directiv-
ity pattern of violins in ODEON, which is averaged over octave bands with 5°spatial
resolution, was used as the directivity filter of sound sources in the simulation. Addi-
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Figure 8.1: The schematic diagram of the geometry of four room models (top view)
with stage block (highlighted with pale green region) and audience block (highlighted
with pale red region).

Variant 63 Hz 125 Hz 250 Hz 500 Hz 1 kHz 2 kHz 4 kHz 8 kHz
Dry 0.18 0.31 0.36 0.40 0.42 0.42 0.43 0.43
Normal 0.18 0.18 0.16 0.14 0.13 0.12 0.11 0.10
Wet 0.10 0.10 0.09 0.08 0.07 0.06 0.05 0.05

Table 8.1: Absorption coefficient values applied to dry, normal, and wet variants across
different frequency bands.

tionally, the far-field Head Related Transfer Function (HRTF) of the Neumann KU-100
binaural head[172] has been employed for the binaural receiver. Since the directivity of
the sound source was not omnidirectional, but rather that of a violin, most parameters
are not fully compliant with ISO 3382–1[37] standards. Nevertheless, these objective
parameters are still capable of reflecting the perceptual attributes of the sound field
generated by the source with distinct directivity [53; 68]. Therefore comparing differ-
ent acoustic environments using these parameters is still possible.

The sound sources were positioned one meter apart and oriented slightly towards
the wall of their left side. To prevent undesirable acoustic effects caused by room sym-
metry, both the sources and listeners were positioned slightly off-centered from the
symmetrical axis of the room. The position of the two receivers was at the first and
last rows of the audience area, facing in the direction of the sound sources on stage.
Due to the differences in the contribution of direct sound and room reflections, these
two receiver positions are expected to represent two distinct acoustic scenarios from
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one another. It should be noted that the geometry of the room, coupled with the place-
ment and orientation of the source and receivers, determine the direction and strength
of direct sound, as well as the direction of the following early reflections from the room.
Consequently, these attributes would be identical among all three acoustic variants of
a specific receiver in a room geometry. However, altering the absorption coefficient of
the walls and floor changes the strength of early reflections and the late reverberations
which results in the divergence between the three acoustic variants of a room objec-
tively and perceptually. Overall, 24 distinct acoustic environments were produced by
varying the room geometry, the absorption coefficient, and the receiver position (4
rooms × 3 acoustic variants × 2 receiver positions). In addition, an anechoic room
was also simulated using R1 and far receiver position by applying 100% absorption to
the walls, audience area, and floor.

The following abbreviation scheme will be used in this chapter to denote each of
the 25 auditory environments: The room geometry (R1, R2, R3, and R4) followed by
acoustic variation (‘D’, ‘N’, ‘W’ for dry, normal, and wet) followed by receiver position
(‘c’, ‘f’ for close and far). For example, the close receiver in the R3 room geometry with
a dry acoustic variation is represented by the notation ‘R3Dc’.

Collection of source stimuli

Sound samples were picked from a pool of 50 audio files presented in Chapter 3 that
were perceptually assessed in terms of source-level blending by expert listeners. Unlike
previous studies on source-level blending which focussed on audio samples of musical
notes or chords [14; 30; 33], three musically realistic sound samples featuring two vi-
olins having a length of 3 to 5 seconds, with distinct degrees of perceived source-level
blending ratings (high, moderate, and poor), were chosen to serve as the test stimuli;
they were labeled as ‘Stimulus A’ with a source-level blending rating of 7.9±1.6 out of
a 10 point scale, ‘Stimulus B’ with a rating of 5.5±2.1, and ‘Stimulus C’ with a rating
of 3.3±1.8. Unlike the previous investigation on source-level blending which utilized
a monophonically rendered version of these samples, the individual instrument tracks
of the two violins of the selected sound samples were used in this investigation to
convolve with the corresponding impulse responses to create the audio samples. The
selection of these specific samples was supported by their low standard deviation val-
ues in blending ratings, indicating internal consistency, and the absence of prominent
indicators allowing easy differentiation between the two violins, such as noticeable
deviations in pitch or note onset. Additionally, they were found to possess a relatively
lower amount of microphone cross-talk and room reflections in a pilot listening test
performed by tonmeisters on individual violin tracks. Along with these three stimuli,
four more audio samples with varying source-level blending ratings were also chosen
for the purpose of training prior to the listening test (detailed in the coming section).
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Preparation of test samples

In each of the 25 simulated acoustic environments, the Spatial Room Impulse Re-
sponses (SRIRs) for each source-receiver combination were generated and extracted
from ODEON simulations as third-order B-format ambisonics files. For each acoustic
environment, the convolution of two SRIRs obtained from the two sound sources to
a particular receiver position with the individual monophonic samples of two violins
corresponding to each test stimulus is performed in REAPER using MCFX convolver
[173]. The levels of each convolved track were further adjusted using a gain atten-
uation factor obtained from ODEON in order to maintain the realistic scaling of lev-
els between source-receiver combinations in each virtual acoustic environment, thus
keeping the simulation sound more authentic. Subsequently, the 3D spatial audio file
was converted to a binaural audio format by utilizing the SPARTA Ambibin Plugin in
REAPER [148]. This was carried out by convolving the 3D audio file with the far-field
Head Related Transfer Function (HRTF) of the Neumann KU-100 binaural head [172].
Since the study focuses on how the room acoustics interact with a dynamically chang-
ing musical signal, the running room reverberance is the major point of interest here.
Therefore, the reverberation tail at the end of the convolved samples is removed by
trimming and applying a fade-out filter.

Listening test procedure

The perceived impression of blending can be assessed using a rating scale or by evaluat-
ing the identifiability of constituent sound sources in a joint performance, as discussed
in Section 1.2.2. Following previous studies on modeling of blending perception, the
blending impression of sound samples in this study was evaluated using a categorical
judgment test employing a 10-point scale with values ranging from 1 to 10, where a
low value corresponds to the least blended impression and a high value to the most
blended impression [28]. The test was conducted using the SQALA platform [174],
which incorporated verbal anchors on the rating scale using labels such as ‘very poor’
to ‘excellent’ to represent varying degrees of perceived blending. A group of 16 par-
ticipants comprising Tonmeister students and experienced musicians performed the
listening test. All the test participants had undergone musical ear training. Moreover,
they had prior experience in critical listening assessment and had at least 12 years of
musical experience. Since trained musicians tend to be more capable and sensitive in
selectively scrutinizing and evaluating the complex spectral and temporal features of
sounds than non-musicians [17; 18], similar to the previous investigation on source-
level blending, it was expected that the test participants would have an almost unani-
mous understanding of blending and provide concordant test responses.

The test was carried out in an acoustically treated room (RT60 = 0.1 s), and the Bey-
erdynamic DT 770 Pro closed-back studio headphones and RME Babyface Pro sound
card were used to playback the binaural audio files from the computer. The objective of
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the experiment, the working definition of blending, and the procedure of the test were
explained to the test participants prior to the start of the listening test. Afterwards, lis-
teners underwent a familiarization/training phase where they were introduced to the
test platform and asked to rate the blending impression of 20 trial samples which were
generated using 4 sound stimuli with different degrees of source-level blending, aural-
ized in 5 distinct acoustic environments. As the ideal examples representing extreme
blending impressions (most and least blended samples) are undefined, participantsmay
not be able to set anchor points on the inner scale developed for the blending assess-
ment. Nevertheless, the training phase is expected to provide an initial understanding
of the possible variations involved in acoustic environments and source stimuli char-
acteristics and help them create a rating scale with a reduced central biasing tendency
of the ratings. Listeners were allowed to replay the samples and adjust the loudness
of the playback, but they were instructed to maintain a fixed volume level after the
training phase.

The listening test with 75 samples started at the completion of the training phase.
In order to avoid direct comparison and minimize the memory retention effects on the
ratings, the sound samples in the test were presented in randomized order. Moreover,
the randomization was distinct for each participant to prevent any potential sequential
effects in the sample ratings. Listeners were instructed to take small breaks of 3 min-
utes after rating a set of 20 samples in order to reduce the impact of mental or listening
fatigue on their ratings. At the end of 75 samples, a discussionwith the test participants
was conducted regarding the subjective assessment of blending, perceived aspects of
the influence of room in blending from the test, etc. The listeners took around 45
minutes to 1 hour to finish the test.

The internal consistency or the reliability of the listeners’ ratings was further as-
sessed by estimating Cronbach’s alpha [117]. The Cronbach’s alpha value is estimated
to be 0.901 which denotes a high internal consistency and reliability in the sample
ratings among the test participants.

8.1.2 Data analysis procedure

Extraction of room acoustic parameters

Room acoustic perception-related studies over many decades have demonstrated that
established room acoustic parameters derived from Room Impulse Responses (RIRs) or
a combination of them capture specific subjective sensations related to different room
acoustic attributes, thereby offering a comprehensive overview of the perceptual char-
acteristics of the acoustic environment[39; 40; 41; 42]. The conventional room acoustic
parameters that correspond to each SRIR were obtained from the ODEON simulation.
Based on the subjective sensation, the room acoustic parameters chosen for the study
can be grouped into the following categories as described in earlier studies[37; 175]:
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• Perceived reverberance: Reverberation time (T30), Early Decay Time (EDT),
Bass Ratio (BR), Treble Ratio (TR).

• Clarity and intelligibility measures: Clarity (C80), Definition (D50), Speech
Transmission Index (STI).

• Sound strength: Strength parameter (G) estimated for three cases; (1) strength
of direct and early reflections (Gearly), (2) strength of early reflections (G5-80),
(3) strength of late reflections (Glate), and Sound Pressure Level of direct sound
(SPLdirect).

• Spatial impression: Early Lateral Energy Fraction (JLF), Early Lateral Energy
Fraction Cosine (JLFC), Late lateral sound level (Lj)

The definition and the estimation procedure of these parameters from the RIRs
are detailed in the Appendix A. While the reverberation time T30 is conventionally
regarded as the primary parameter for characterizing room acoustic response, Early
Decay Time (EDT) was hand-picked here due to its demonstrability to better capture
the subjective sensation of reverberance [39; 40]. Since the spectral centroid of the
perceived sound is shown to play a significant role in the blending perception[14], the
Bass Ratio (BR) and Treble Ratio (TR) [176], which reflect spectral coloration brought
by the reverberation, were selected for the investigation. While the Clarity index (C80)
indicates the perceived clarity of music, the Definition parameter (D50) is a similar
energy ratio which better represents clarity in speech [37]. Additionally, the Speech
Transmission Index (STI) [38], which evaluates speech intelligibility in rooms is also
assessed in this investigation.

The Strength parameter (G) indicates the ability of the acoustic environment to
amplify sound energy from the source, often describing the subjective sensation of
loudness[40]. While not standardized in ISO, studies suggest that analyzing early and
late arriving sound energy separately can offer valuable insights into the subjective
and objective characteristics of the acoustic environment[177; 175]. An increase in the
early arriving results in a better clarity sensation while an increase in late arriving
energy leads to a higher sensation of reverberance and envelopment. Therefore three
separate parameters, Gearly (energy in the early part of RIR, i.e., in 0 - 80ms), G5-80 (en-
ergy of early reflections in 5 - 80ms excluding direct sound), and Glate (energy of late
reflections in 80ms -∞), are chosen for this analysis.

Spatial perception in acoustic environments is primarily influenced by two key con-
cepts: Apparent Source Width (ASW) and listener envelopment (LEV) [178]. Apparent
source width, linked to the energy of early reflections from lateral sides, is evaluated
through parameters such as Early lateral energy fraction (JLF) and Early lateral energy
fraction cosine (JLFC). While JLF is typically used to depict ASW, it varies with the square
of the cosine of the angle of incident reflections. JLFC compensates for this effect and
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is therefore expected to better represent the subjective sensation of perceived source
width. However, studies suggest that LEV may be more crucial in spatial perception
aspects, as ASW can be masked by late energy [178]. Although late arriving energy
from back, overhead, and front regions contribute to the sensation of envelopment,
the Late lateral sound level (Lj) is shown to better represent the listener’s envelopment
sensation[179].

The values of room acoustic parameters for each of the 25 acoustic environments
were estimated by averaging the values acquired from the RIRs estimated from two
sound sources to the receiver. The parameters of ISO 3382–1 [37] reported in this
study (including 3 variants of G) are the averaged values of the 500–1000 Hz (mid-
frequency) bands except the spatial parameters JLF, JLFC, and Lj that are averaged for
125–1000 Hz frequency bands.

Although each of the discussed parameters relates to distinct objective or subjective
attributes of the acoustic environments, many of them are known to exhibit a strong
correlation between themselves, particularly those within the same group [37; 175].
The Pearson Correlation Coefficient (PCC) estimated between the room acoustic pa-
rameters derived from the acoustic environments chosen for this study is presented in
Table 8.2. The correlation coefficient values conform with the observation of multi-
collinearity by exhibiting a strong correlation between specific groups of parameters.

Prediction modeling of blending perception

In this work, a regression model is formulated utilizing the Random Forest regres-
sion method to predict the perceived degree of blending impression using source-level
blending ratings and room acoustic parameter values. Random Forest (RF) model-
ing is one of the widely used ensemble learning approaches for regression and clas-
sification problems that work by combining multiple decision trees as base learners
[180; 181; 182]. This supervised Machine Learning technique takes into account the
multicollinearity and multi-dimensionality of involved predictor variables and is fast
to train, robust to outliers and noise, and resilient to overfitting [181; 183].

The decision tree, the fundamental component of RF modeling, is a binary recur-
sive partitioning method in which each node point is split into two successor nodes
according to the value of a particular predictor variable at the node. The best predictor
variable and its ‘splitting threshold point’ for partitioning at each node are estimated
by identifying the variable that maximizes the decrease in its variance from parent-
level to child-level nodes from all the possible combinations. The splitting process will
eventually result in homogeneity and reduced impurities in two child nodes, and the
process continues until a predefined criterion, such as a limit on the number of nodes
or a specific minimum number of samples in each node, is met.
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The flow diagram of the Random Forest modelling is demonstrated in Figure 8.2.
The RF model trains an ensemble of decision trees, where each tree is trained using
an independent sample space that is generated using the bootstrapping method – a
resampling method that creates distinct datasets by randomly sampling the original
dataset iteratively with replacement [184]. Accordingly, no assumptions about the un-
derlying distribution of the data, such as normality, are considered in the modeling
process. Additionally, predictor variables from the dataset are also randomly assigned
to each decision tree, reducing the correlation between trees. While testing the RF
model, the features associated with the test sample are passed through the individual
decision trees until the sample reaches the terminal nodes, and the prediction value
of the sample is obtained by averaging the response values of training samples in the
given terminal node. The final prediction of the Random Forest model for each test
sample is obtained by averaging the predicted responses of each decision tree with-
out any weighting. Although single decision trees are relatively weak in prediction
accuracy and prone to overfitting, the Random Forest model is famous for its high
prediction accuracy and ability to provide feature importance of involved predictor
variables, especially for small sets of samples with large numbers of features.

Figure 8.2: The flow diagram of Random Forest modelling.
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One advantage of the Random Forests algorithm is that it can provide a measure of
feature importance which indicates how much each predictor variable contributes to
the performance of the model. A most typical way to estimate feature importance is
by estimating the Mean Decrease in Impurity (MDI) for all nodes where the predictor
is used in the decision trees. A higher MDI at a node corresponds to the ability of the
predictor to split a large set of samples into two homogeneous classes by maximizing
the decrease in impurity.

8.2 Results
8.2.1 Univariate exploratory analysis of musical and architec-

tural variables:

Univariate exploratory data analysis is performed here to explore the impact of mu-
sical, architectural, and acoustic features incorporated in the test design on musical
blending perception.

Influence of source-stimuli on blending ratings: The distribution of blending
ratings of sound samples for different source stimuli is plotted in Figure 8.3 using hor-
izontal box plots and Probability Distribution Functions (PDF). The Figure shows a
decline in the mean value of rating values from stimulus A to C, congruent with the
order of their source-level blending ratings. In contrast to the evenly spaced source-
level blending ratings, stimulus B shows a relatively similar distribution of blending
ratings to stimulus A with a relatively similar median value when passed through dif-
ferent acoustic environments, whereas stimulus C seems to stand out with relatively
lower rating values. Notably, the tails of the distributions for high source-level blend-
ing (stimulus A) and low source-level blending (stimulus C) are extended to very low
and high ratings respectively, underscoring the impact brought by the acoustic envi-
ronments on the perceptual outcomes for samples with distinct source-level blending.

Since the distribution of the three groups of ratings does not follow the normal-
ity assumption (validated using Shapiro-Wilk test [149], p<0.001), the Kruskal-Wallis
test, the non-parametric equivalent of one-way ANOVA based on ranks [157], was per-
formed to analyze the statistical difference between the distribution of three groups of
samples by assessing differences in the mean ranks. The results showed that it failed
to reject the null hypothesis that there is no difference in the mean ranks of the groups
(χ2(2)=278.1, p< 0.001), therefore there exists a statistical difference in the distribution
of ratings of the three groups. Dunn’s Post Hoc test conducted to assess which groups
were substantially different from the others revealed that the three groups were sta-
tistically different from one another (p< 0.01 for three pairs of groups, adjusted using
Bonferroni correction), underscores the unique role of the source stimulus in shaping
perceived ratings.
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Figure 8.3: Distribution of blending ratings for three source stimuli with different de-
grees of source level blending.

Influence of room geometry on blending ratings The variation in the distri-
bution of blending ratings of samples from different room geometries is depicted in
Figure 8.4. The blending ratings for R1 are relatively lower, while R2 has a broader
distribution of blending ratings. Conversely, R3 and R4 show relatively similar dis-
tributions of ratings encompassing higher values with the same median values and
inter-quartile ranges, indicating slight improvement over R1 and R2. This observa-
tion indicates that, within the chosen set of rooms, the increase in the volume of the
rooms tends to enhance the blending impression up to a certain level, beyond which
no substantial improvement is observed.

Figure 8.4: Distribution of blending ratings for the four acoustic environments having
different geometries.
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Since the distributions of these 4 groups do not meet the normality condition
(Shapiro-Wilk test, p<0.001), the Kruskal-Wallis test was performed here similar to the
preceding case to assess the statistical difference among the groups. The results sug-
gest that there exists a statistical difference between the ratings of samples from four
room geometries (χ2(3)=56.02, p<0.001). The Dunn’s Post Hoc test conducted with
Bonferroni correction showed that while there is no statistically significant difference
between the pair R3 and R4 (p=0.935), the other two groups, R1 and R2, are different
from each other (p=0.009) and they are also different from R3 (p<0.001, p=0.002) and
R4 (p<0.001, p=0.034) respectively.

Figure 8.5: Distribution of blending ratings for three variations in the absorption coef-
ficients utilized.

Influence of acoustic absorption variation Figure 8.5 demonstrates the distri-
bution of rating of samples having different absorption properties. The dry acoustic
environment has resulted in the relatively lowest blending ratings, while the normal
acoustic environment resulted in higher ratings as seen in Figure 8.5, indicating an
improved impression compared to the rest two cases. This suggests that the low and
high extremes of absorption could result in very strong or very weak reflections may
lead to a lowering of blending impression.

The Kruskal-Wallis test, performed due to the deviation from normality (Shapiro-
Wilk test with p<0.001), indicated a statistical difference in ratings among samples
from different acoustic variants (χ2(2)=28.91, p<0.001). The Post Hoc analysis re-
vealed no statistically significant difference between Normal and Wet acoustic con-
ditions (p=0.933), while the Dry condition showed a significant difference from both
Normal (p<0.001) and Wet (p<0.001) conditions. These results imply that the acoustic
variations introduced in the test design must have diversified the perceived blending.
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Influence of listener’s position The variation in the distribution of ratings of sam-
ples for the near and far positions is shown in Figure 8.6. With a maximum cen-
tered around the rating value of 8 in their probability density function, the far po-
sition is shown to have relatively higher blend ratings than the near position. The
Mann-Whitney U test[141], a non-parametric version of the Student’s t-test, was per-
formed here due to deviations from normality conditions (Shapiro-Wilk test, p<0.01),
confirmed a statistical difference between two groups (p<0.01). This suggests that
the introduced distance variations should have contributed to altering the perceived
blending impressions of the sound samples.

Figure 8.6: Distribution of blending ratings for the near and far listener’s position.

8.2.2 Correlation between blending impression and room
acoustic parameters

The correlation between room acoustic parameters estimated for each of the acoustic
environments and the mean value of ratings of samples of three stimuli with different
degrees of source-level blending is evaluated. A number of room acoustic parame-
ters involved in this investigation exhibit a non-linear higher-order variation with the
test ratings (see section 8.2.3). Therefore, Spearman’s rank correlation coefficient[158],
which is based on the monotonic relationship between variables, is used for this analy-
sis. In contrast to the established Pearson’s correlation coefficient which measures the
linear relationship between the two variables involved, Spearman’s correlation Coef-
ficient, a non-parametric measure of the correlation of ranks, is observed to be more
appropriate for non-normally distributed data and more robust to outliers than Pear-
son’s correlation. Since certain acoustic parameters such as C80, Glate, BR, TR, etc., lack
a physically meaningful value in the anechoic environment, the ratings corresponding
to the acoustic environment ‘R1A’ were avoided from this correlation analysis. The
Spearman correlation coefficients derived from correlating the mean value of ratings
of samples of three different stimuli and the room acoustic parameters extracted from
the 24 acoustic conditions are presented in Table 8.3.
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Room Acoustic
Parameter

Stimulus A
(7.9±1.6)

Stimulus B
(5.5±2.1)

Stimulus B
(3.3±1.9)

EDT 0.48* 0.51* 0.73**
T30 0.44* 0.60** 0.78**
BR -0.07 -0.30 -0.50*
TR -0.50* -0.32 -0.54**
C80 -0.36 -0.73** -0.78**
D50 -0.39 -0.77** -0.78**
STI -0.32 -0.76** -0.75**
Gearly -0.57** -0.45* -0.51*
G5-80 -0.56** -0.07 -0.23
Glate -0.25 0.07 0.11
SPLdir -0.32 -0.58** -0.42*
JLF -0.34 0.13 -0.12
JLFC -0.25 0.20 -0.03
Lj 0.44* 0.72** 0.83**

Table 8.3: Spearman’s correlation coefficient computed for ratings of three stimuli in
different acoustic environments and corresponding room acoustic parameters (n=24,
*p<0.05, **p<0.01).

Many of the room acoustic parameters were shown to have a statistically signifi-
cant correlation with blending ratings. Notably, specific parameters such as EDT, T30,
C80, D50, STI, and Lj reveal a systematic relationship in the correlation with the changes
in the degrees of source blending of samples. EDT and T30 are shown to be positively
correlated with the blending ratings of samples, and the magnitude of correlation in-
creases with a decrease in the degree of source-level blending (from 0.48 to 0.73 for
EDT, and 0.44 to 0.78 for T30). This suggests a direct positive relationship between the
reverberance of the acoustic environment and the perceived blending rating, further
the magnitude of the correlation is attributed to the source-level blending character-
istics. Conversely, parameters such as C80, D50, and STI exhibit a negative correlation
with blending ratings, with the correlation being statistically insignificant for stimu-
lus A (p-value>0.05) but highly significant for stimulus B and C. This suggests that the
perceived blending of samples with a moderate or low degree of source-level blending
improves with the degradation of clarity and intelligibility of the acoustic environ-
ment, although this trend is not observed in samples with high source-level blending
(see correlation values of C80, D50, and STI in Table 8.3). Furthermore, the parameter Lj
also displays a significant correlation with the three stimuli, with its magnitude of cor-
relation increasing as the source-level blending of the sample decreases. This suggests
that an enhanced sensation of spatial envelopment can positively contribute to im-
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proving the blending of samples, with this effect being more pronounced for samples
featuring a lower level of source-level blending.

On the other hand, parameters like Gearly show almost equivalent statistically sig-
nificant correlations (p<0.05) with samples of three stimuli irrespective of the variation
in their degrees of source-level blending (see correlation values of Gearly in Table 8.3).
Other strength parameters like G5-80 exhibit a negative correlation solely with sample
A, while Glate demonstrates no statistically significant correlation with blending (see
Table 8.3). Additionally, SPLdirect appears to have a statistically significant negative
correlation with samples B and C, therefore the stronger direct sound from the sound
source seems to degrade the perceived blending for samples having moderate or poor
source-level blend. A trend of negative relationship is observed between the treble ra-
tio and the blending ratings which is relatively the same for samples having high and
poor source-level blend, however, their correlation is not statistically significant for
stimulus B. Other than Lj, the spatial parameters JLF and JLFC, which represent the per-
ceived sensation of apparent source width, do not exhibit any significant correlation
with the blending ratings.

8.2.3 Variation of blending with room acoustic parameters
In this section, we visualize the relationship between the room acoustic parameters
calculated for each of the 25 acoustic environments and the mean value of test ratings
of three stimuli characterized by different degrees of source-level blending. One rep-
resentative parameter from each of the four classes representing different subjective
sensations of the acoustic environment (discussed in section 8.1.2), namely T30, D50,
Gearly, and Lj is presented here, all of which exhibit a significant correlation with the
blending ratings.

The variation of mean values of sample ratings of three stimuli against the T30
parameter extracted from each acoustic environment is depicted in Figure 8.7. The
lowest blending impression among the three stimuli is consistently observed in the
anechoic environment (R1A with T30=0) irrespective of source-level blending varia-
tions. This observation suggests that room acoustic reflections generally enhance the
blending impression. Additionally, the three stimuli follow the same order at R1A hav-
ing approximately equally spaced ratings that are in agreement with their source-level
blending ratings. The variance in the perceived blending impression of three stimuli
undergoes minimal changes when the monophonic source signals are transformed to a
spatially separated source-receiver scenario in a reflection-free environment, although
the scale of blending evaluation differs in both contexts.

While the order of stimuli ratings in different acoustic environments mostly aligns
with the source-level blending, stimulus B seems to outperform stimulus A in a few
cases. Overall, the rating trend of stimulus B closely resembles that of stimulus A,
while Stimulus C seems to be different which is consistent with the observations from
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Figure 8.7: Variation of blending ratings of stimulus A (source-level blending of
7.9±1.6), stimulus B (5.5±2.1), and stimulus C (3.3±1.8) with respect to Reverbera-
tion time (T30) exhibiting Spearman’s correlation of 0.44, 0.60, and 0.78 respectively.

Figure 8.3. Although the blending impression generally improves from R1A with in-
creasing T30, the three stimuli appear to saturate in the blending ratings beyond which
a minimal improvement is observed. Whereas stimuli A and B reach this asymptotic
behavior at relatively lower T30 values, stimulus C exhibits a relatively stronger linear
progression with T30 and reaches the asymptote at relatively higher T30 value. This
phenomenon may be attributed to the larger headroom available for the improvement
of perceived blending by the acoustic environment in samples with poor source-level
blending as compared to a low headroom available in samples with high source-level
blending. Therefore, the degree of source-level blending of the sound stimulus utilized
appears to influence the alteration of final perceived blending caused by the acoustic
environment, which agrees with the findings of the correlation analysis. However, it
is worth noting that the highest rating of blending among the acoustic environments
was consistently observed at ‘R3Nf’ (room with 10003 with normal absorption and far
listener position) for the three stimuli, regardless of the differences in their degrees of
source-level blending. This particular observation demands further investigation. The
variation plot of EDT is not depicted, as it exhibited a similar trend to the T30 plot.

Figure 8.8 demonstrates the variation of the sample ratings of three stimuli and the
Definition parameter (D50) extracted from the different acoustic environments. Given
the fact that C80, suitable for experiments involving music, becomes infinite in an ane-
choic setting, the parameter D50 is utilized here to illustrate how blending changes with
the subjective sensation of clarity by incorporating the anechoic condition. A notable
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Figure 8.8: Variation of blending ratings of stimulus A (source-level blending of
7.9±1.6), stimulus B (5.5±2.1), and stimulus C (3.3±1.8) with respect to Definition
parameter(D50) exhibiting Spearman’s correlation of -0.39, -0.77, and -0.78 respectively.

trend of decreasing blending ratings is observed with increasing D50 values, which is
substantiated by a negative correlation between the derived T30 and D50 values (see
Table 8.2). While stimuli A and B show a relatively lower degree of variation with
D50, this effect is particularly prominent in stimulus C, especially when excluding the
anechoic condition. Similar trends were observed in the variation plots of C80 and STI.

The variation of blending ratings of three stimuli with the strength parameter esti-
mated for the early part of RIR (Gearly) is demonstrated in Figure 8.9. Unlike the earlier
cases, the mean ratings of samples with three stimuli show a higher-order (i.e., non-
linear) variation with Gearly which is particularly evident in stimulus C. This trend of
higher-order variation remains consistent, even when the anechoic condition is ex-
cluded as an outlier. Although the correlation is relatively weak, parameters like G5-80
also show a similar higher-order variation with blending ratings.

Figure 8.10 illustrates the variation of blending ratings against the Late lateral
sound level parameter (Lj). Given that the anechoic environment lacks a physically
meaningful Lj value, it was omitted from the plot. While the perceived blending im-
pression generally improves with increasing Lj values, it appears to have a greater
impact on stimulus C, exhibiting a linear relationship. However, this linear relation-
ship gradually diminishes towards stimulus B and then A. This trend aligns with the
correlation analysis findings and reflects the observation of more headroom available
for the improvement of perceived blending by the acoustic environment in samples
with poor source-level blending as compared to a low headroom available in samples
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Figure 8.9: Variation of blending ratings of stimulus A (source-level blending of
7.9±1.6), stimulus B (5.5±2.1), and stimulus C (3.3±1.8) with respect to Strength pa-
rameter (Gearly) exhibiting Spearman’s correlation of -0.57, -0.45, and -0.51 respectively.

with high source-level blending. Therefore, analogous to the reverberance-related at-
tributes, this spatial attribute also seems to demonstrate a systematic relationship with
the perceived blending impression where its influence is determined by the degree of
source-level blending in the stimuli.

8.2.4 Random forest modeling and feature importance

Modeling with separate test-train datasets

Random Forest regression modeling is performed to estimate the perceived degree of
the overall blending of sound samples using the source-level blending ratings and room
acoustic parameters. In the first phase of the modeling process, Random forest regres-
sion was carried out by randomly partitioning the samples into 70% training data (i.e.,
50 samples) and 30% testing data (i.e., 22 samples) sets. Samples of anechoic condition
were omitted from the regression modeling due to physically invalid values of certain
parameters, and the remaining 72 samples were utilized for the modeling process. The
modeling was executed using the Random Forest regressor function from the Scikit-
learn machine-learning library package [185] in Python. The regressor in this study
comprised 100 decision trees in which the nodes are expanded until all leaves are pure
or contain only one element. A random bootstrap sampling method was utilized for
assigning the input datasets to each decision tree. To ensure a reliable result that is
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Figure 8.10: Variation of blending ratings of stimulus A (source-level blending of
7.9±1.6), stimulus B (5.5±2.1), and stimulus B (3.3±1.8) with respect to Late lateral
sound level parameter (Lj) exhibiting Spearman’s correlation of 0.44, 0.72, and 0.83 re-
spectively.

free from bias or overfitting, the modeling process was repeated 20 times employing
randomly assigned training and testing data in each iteration.

Figure 8.11 illustrates the performance of outputs of 3 randomly selected models
from the mentioned 20 different ones, serving as an example to visualize the prediction
accuracy of this modeling technique in predictions of blending ratings. The predicted
blending ratings of randomly selected 22 test data samples in each model are plotted in
the figure against the perceived blending ratings for comparison. The data points in the
figure appear to be distributed closely to the ‘y=x’ line, signifying a strong agreement
between the perceived and predicted ratings and thereby upholding the feasibility of
the model. The remaining 17 models also exhibited the same trend, and therefore they
were excluded from Figure 8.11 for visual clarity. The mean absolute error, defined
as the average of the absolute difference between the predicted and perceived ratings,
is calculated across 20 different models to be 0.59 with a standard deviation of 0.08.
This indicates that the model is able to predict the perceived blending ratings within
a deviation range of approximately ±6% in the prediction values.

To evaluate the conformity between perceived and predicted blending ratings, Lin’s
concordance correlation [150] is calculated between the perceived and predicted rat-
ings of randomly selected 22 test samples in each of the 20 different models. Unlike
the Pearson correlation which assesses the linearity between two variables, Lin’s con-
cordance correlation estimates the concordance or the level of agreement between a
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Figure 8.11: Blending ratings predicted by three different random forestmodels (having
different test-train data sets) against the perceived blending ratings.

bivariate pair of observations of the same variable by examining the proximity of these
observations to the identity line ‘y=x’ passing through the origin. The estimated con-
cordance correlation coefficients from the 20 different models are distributed within
the range of 0.83 to 0.88 with a mean value of 0.85, signifying a strong agreement be-
tween the perceived and predicted ratings and thereby underscoring the viability of
the implemented Random Forest model.

Cross validation of the model

The results obtained from repeated modeling with separate test-train data sets may ex-
hibit biases or randomness due to the limited sample size. To overcome this, following
the same methodology used in Chapter 3, the accuracy of the model is further vali-
dated using Leave-One-Out Cross-Validation (LOOCV) [140]. LOOCV is implemented
through an iterative modeling process, where all data points are used for training ex-
cept one for prediction in each iteration, which resulted in 72 unique models in this
evaluation using distinct data samples. Although it is computationally demanding, this
approach guarantees a precise and unbiased assessment of the performance of the re-
gression model. The cross-validation results reveal a mean absolute error of 0.56 out
of 10, representing an approximate 6% deviation between the predicted and perceived
ratings across the 72 models, which is consistent with earlier findings. The two-fold
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evaluation of the Random Forest regression model, involving separate test-train data
and LOOCV, demonstrates its resistance to biases, over-fitting, and chance predictions,
and thereby substantiating its validity in predicting perceived blending ratings with
reliability and accuracy.

Assessment of feature importance

The feature importance in the percentage scale of the involved parameters was es-
timated across the 20 distinct regression models created from diverse train-test data
sets, and the distribution of the importance values of each individual parameter is vi-
sualized in Figure 8.12. The source-level blending ratings of the involved sound stimuli
with feature importance values around 60% stand out as the primary contributor to the
overall perceived blending impression while the room acoustic parameters selected for
the analysis appear to collectively contribute to only 40% of the overall importance in
explaining the perceived blending impression. Notably, the room parameters, T30, EDT,
D50, Lj, and Gearly along with source-level blending ratings account for the 85% variance
of the estimated feature importance. This can be interpreted that the acoustic environ-
ments with enhanced reverberance and spatial envelopment, coupled with reduced
clarity and weak early reflections, significantly increase the perception of blending.

The Random Forest model achieves good results by taking into account the mul-
ticollinearity among the room acoustic parameters and their non-linear relationship
with the blending ratings. However, multicollinearity of involved variables may re-
duce the reliability of the feature importance values of the model, and its interpretabil-
ity. For example, if two features are highly correlated, although they are randomly
assigned for each decision tree, the impurity reduced by the first feature in the pres-
ence of the second feature may not be necessarily reduced again by the second feature.
Considering the significant correlations among specific room acoustic parameters (see
Table 8.2), it is necessary to carefully and critically analyze the feature importance
values instead of interpreting the results strictly based on the estimated importance
values. Therefore the feature importance values of the parameters have been grouped
according to subjective sensations, as outlined in Section 8.1.2, and are presented in Ta-
ble 8.4. Given the source-level blending ratings and the room acoustic parameters are
mutually orthogonal, explaining the contribution of source-level blending and room
acoustic support in the final perception of the blending as 60% and 40% respectively
remains valid. But when it comes to room attributes, the perceived reverberance of
performance spaces, encompassing parameters related to decay times, emerges as the
most influential aspect of the room acoustic environment in shaping the perception of
blending.
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8.2. Results

Figure 8.12: The distribution of feature importances of involved parameters (in per-
centage) assessed across 20 different models with mean feature importance denoted
on the y-axis on the right (a zoomed version of the feature importance distribution of
room acoustic parameters is given on the right side for a better-detailed view).

Subjective attribute Overall feature importance

Source-level blend 60.8%
Reverberance (EDT, T30, BR, TR) 14.5%

Clarity and intelligibility (C80, D50, STI) 9.9%
Sound strength(Gearly, G5-80, Glate, SPLDir) 7.7%

Spatial parameters (JLF, JLFC, Lj) 7.0%

Table 8.4: Feature importance estimated for different subjective attributes of room
acoustics in the blending perception.
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8.3 Discussion

Although previous studies addressed blending from two distinct directions – one as a
music-perception problem at the instrument level without an acoustic environment[14;
33; 30], and the other as a subjective attribute in the perceptual evaluation of acoustic
environments[43; 7; 27] – this study integrates these two aspects for the first time by
analyzing the overall perception of blending as a function of the perceived source-
level blending ratings of the stimuli involved, as well as the room acoustic parameters
extracted from the acoustic environments.

Since individuals from diverse backgrounds may have discrete conceptions and
definitions about the blending of sounds, the two perceptual evaluations of blending
(source-level and overall blending) discussed in this studywere conducted ‘exclusively’
among critical listeners withmusical ear training, with an expectation to get consistent
ratings with good agreement due to their sensitivity to musical audio cues. To ensure
the authentic and innate representations of constituent sound sources in a musically
realistic joint performance, the in-situ close-mic recordings of ensemble performance,
capturing the qualities of performance strategies and auditory-visual feedback, were
utilized in this study for the creation of the test stimuli. Furthermore, employing room
acoustic simulations for auralization of test samples better helped in measuring many
of the chosen room acoustic parameters such as G, Lj, etc., with better precision and
Signal-to-Noise Ratio (SNR), which are often challenging to estimate in real-life situa-
tions.

The correlation analysis conducted between room acoustic parameters and the rat-
ings of the three test stimuli unveiled room acoustic parameters that exhibit a sta-
tistically significant influence on blending ratings including EDT, T30, C80, D50, STI,
Gearly, SPLdir, Lj, representing subjective sensation of reverberance, clarity, intelligi-
bility, strength and envelopment. The correlation of EDT and T30 parameters with
blending align with earlier findings [27]. While TR was identified as a significant
parameter of blending in a previous study [27], it does not appear to have a signifi-
cant influence in this study, which requires further investigation. Additionally, certain
room acoustic parameters exhibited a trend where their magnitude of correlation was
influenced by the degree of source-level blending rating of the stimuli, with a higher
magnitude of correlation observed in samples with a poor source-level blend, and vice-
versa. This observation can be interpreted that room acoustic assistance has a more
pronounced impact on enhancing the perceived impression of blending in amateur
performances compared to highly coordinated professional ones. However, the cru-
cial role of room acoustic feedback in shaping the performance strategies of individual
musicians[10; 11; 13] suggests that their performancesmay vary across different acous-
tic environments. Therefore, further investigation is needed to understand its impact
on the results obtained in this study.
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In this study, the perceived degree of source-level and overall blending is repre-
sented with one single value which does not include a temporal variation of blending
and lacks information on the inherent musical/acoustic factor that caused the non-
blending at the source-level (e.g. difference in onsets/offsets, spectral dissimilarity,
variation in pitch and loudness, etc.). The way room acoustic reflections respond and
interact with variation in source-level blending caused by individual factors such as
pitch difference, timing asynchrony, loudness difference, spectral dissimilarity, etc.,
may not be necessarily similar. Hence, the source-level blending characteristics of the
three stimuli utilized here might have an impact on the final perceived blending rat-
ings. Therefore, a more controlled experiment is necessary in the future to examine
how the room acoustic environment interacts with varying degrees of source-level
blending, which arise from individual variations in the aforementioned factors within
themusical stimulus. Moreover, the spatial attributes such as the position, spacing, and
orientation of the sources on the stage shall also be scrutinized in detail to understand
their impact on blending.

Though the selected room acoustic parameters are well-established in describing
the perceptual attributes of acoustic environments, numerous studies have described
the limitations of the existing parameters in fully explaining the subjective sensations
[175; 186; 187], which extends the possibility of incorporating alternative parameters
to try out the modeling approach. The future works can advance further by addressing
the constraints of static binaural rendering of sound fields (such as front-back confu-
sion) by performing a dynamic binaural rendering in which the movement and head-
rotation of the listener are possible, or by utilizing measured/simulated Spatial Room
Impulse Responses (SRIRs) and loudspeaker arrays for 3D sound field rendering in
which the differences of HRTFs and limitations of binaural rendering are avoided.

The proposed RF regression prediction model serves as a tool for future research
aiming to estimate blending across a large and diverse dataset encompassing various
instruments and a broad spectrum of real and virtual room acoustic environments with
a wide variety of architectural and geometrical variations. While the model presented
in this study is constrained by its dependence on a single-valued perceived rating of
source-level blending for sound stimuli, the ultimate goal is to develop a comprehen-
sivemodel that accounts for all aspects of blending. Thiswill be accomplished by devel-
oping a separate model for estimating time-varying source-level blending in dynamic
musical signals and integrating it into the existing approach, enabling the estimation
of variation in room acoustic contribution with changes in source-level blending.

Considering the feature importance of source-level blending and room acoustic pa-
rameters, it can be inferred that a non-symmetric relationship possibly exists between
the source-level blending and the room acoustic contribution. In other words, when
source-level blending is at moderate or high levels, room acoustics typically could
enhance the perceived overall blending within the available headroom for improve-
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ment until reaching a saturated level. Conversely, if the source-level blending is poor,
the capacity of room acoustic support to enhance it is found to be constrained, even
when there is ample headroom for improvement. Therefore, in reality, musical per-
formances with a high source-level blend may not necessarily need the support from
room acoustics to sound blended, whereas the well-regarded concert halls renowned
for their acoustics may not exhibit optimal blending if performers fail to meet the req-
uisite minimum source-level blending standards. Additionally, the findings from RF
feature importance and correlation analysis suggest that acoustic environments featur-
ing a better sensation of reverberance and enhanced spatial envelopment, along with
reduced clarity and weak early reflections, significantly support the overall blending
perception. When it comes to concert hall acoustic design, high clarity sensation and
strong early reflections are generally preferred. Therefore, improving the blending
must be carefully considered by achieving a sufficiently high reverberance and envel-
opment without affecting the so-desired clarity and reducing the early reflections.

8.4 Summary

This study showcases the viability of a computational modeling approach in evalu-
ating the perceived blending impression in a musically realistic performance setting
through the estimation of the distinct contributions made by source-level blending
and the room acoustic environment. Room acoustic reflections are shown to enhance
the perceived blending compared to a reflection-free environment, and the correla-
tion analysis identified significant room acoustic parameters (T30, D50, Gearly, Lj, etc.)
that played a pivotal role in altering the final perceived blending impression. The de-
gree of source-level blending of sound stimuli is shown to influence the alteration in
perceived blending brought by the acoustic environment. Specifically, samples with
poor source-level blending exhibited more significant potential for enhancement of
the overall blending effectuated by the acoustic environment, whereas those with high
source-level blending had limited room for improvement. This underscores the intri-
cate relationship between source-level blending and room acoustics in shaping the
perceived blending quality, emphasizing the necessity to model the overall blending
as a function of both.

The proposed Random Forest regression model for predicting the overall perceived
blending impression using source-level blending ratings and room acoustic parame-
ters is meticulously tested and validated through a comprehensive two-fold evalua-
tion, involving modeling with 20 different test-train datasets and leave-one-out cross-
validation. The regression model demonstrates a significant accuracy, with a mean
absolute error of 0.6 on a 10-point scale (i.e., a 6% deviation in predictions) and a
mean concordance correlation of around 0.85 between the predicted and perceived rat-
ings. This robust performance underscores the scope and applicability of this machine-
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learning technique in analyzing complex psychoacoustic phenomena such as musical
blending. Additionally, the relative importance of source-level blending rating and
room acoustic contribution in the final perception of blending is estimated to be around
60% and 40% respectively, which suggests that the room contribution to overall blend-
ing impression is nearly as significant as source-level blending between the instru-
ments in this controlled experimental setting.

While the perceptual rating scale of blending is relative and subject to influence
from factors such as the background of the listeners involved and the characteristics
of the sound stimuli utilized, the computational model presented in this work provides
a foundation for future research on the comprehensive modeling of blending. Despite
having limitations in assessing source-level blending features in this constrained ex-
periment, the contributions of source-level blending and individual room acoustic at-
tributes in the overall perception of blending are quantified in this analysis for the first
time. As a result, it offers valuable insights into perceptually oriented room acoustic
design, music performance, and music perception-related research.
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Chapter 9

Conclusion

9.1 Overall summary

This study presents a foundational attempt to analyze and evaluate the perceptually
relevant acoustic attributes of musical instruments in joint musical performances. This
was performed by examining various acoustic and perceptual aspects involved in en-
semble sound, including the blending between instruments at different levels, percep-
tual relevance of directivity of individual instruments, and representation of appropri-
ate input source signals and directivity of instruments in the auralization of ensemble
sound. The major content of this thesis is organized into three modules, with the pri-
mary results of each module summarized below.

The first module focussing onmusical performance-based representation of
sound sources included three studies. An initial exploration of ensemble sound and
blending between instruments, conducted through a listening test associated with a
live string ensemble performance, showed that the ability to predict the number of
constituent sources reduces with an increase in the number of instruments in the
ensemble and thereby supports the blending. This is shown to be influenced by the
characteristics of the acoustic environment, where in specific acoustic conditions, no
significant improvement in the prediction accuracy and the blending impression is ob-
served when increasing the number of sources beyond a particular value. Additionally,
the impression of ensemble sound improves with the increasing number of sources to
an extent, beyond which no major change is observed. While this pilot study with a vi-
olin ensemble focuses only on themacroscopic perception of blending, it highlights the
importance of blending between instruments at the source level and the influence of
room acoustics in it. It also underscores need for microscopic examination of blending
of individual musical samples in realistic settings.
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Building upon these insights, blending between the instruments at the source
level was investigated using sound samples of musically realistic score-independent
monophonically-rendered unison performances of two violins in in-situ conditions.
Based on the perceptual labeling of these samples from a listening experiment with
expert listeners, this study illustrated the feasibility of a computational modeling ap-
proach to classify sound samples into blended or non-blended classes based on their
overall perceived impression of source-level blending. Among the different dimen-
sionality reduction techniques explored in that investigation, the Linear Discriminant
Analysis (LDA) paired with the Euclidean distance measure performed on the Mel-
Frequency Cepstral Coefficient (MFCC) features extracted from the sound samples is
shown to be an effective method for the classification of samples based on source-
level blending. This was tested and verified using a separate train-test data set, and
leave-one-out cross-validation, showing an accuracy of 87.5%, and 87.1% respectively,
indicating a promising method that considered sound samples with different musical
content. In contrast to the previous research on the estimation of source-level blend-
ing impressionwhich employedmusically constrained sound samples (such as notes or
chords) of instruments from sophisticated recording conditions, this study surpasses
earlier limitations by classifying ‘ecological’ sound samples of joint performances, even
without accessing the individual source recordings.

Considering the significance of room acoustic and inter-musician feedback in joint
music performance, the following chapter analyzed the quality of close-microphone
recordings from in-situ conditions for the auralization of the ensemble sound. This was
done by comparing the similarity and naturalness of auralized sound samples of en-
semble performances with different numbers of violins, using Binaural Room Impulse
Responses (BRIRs) generated from in-situ measurements and room acoustic simula-
tions, against binaural recordings of the actual performance. Although the real binau-
ral recordings were not always rated to be highly natural, auralization from the clip-on
microphone signals using in-situ measured BRIRs exhibited a similar distribution of
naturalness impression. Moreover, the naturalness of these auralized samples seemed
to improve with an increasing number of violins, masking deficiencies in the clip-on
mic recordings in the auralized output. This demonstrates the applicability of such
close microphone recordings for auralization. While the samples of measured BRIRs
do not demonstrate significant similarity to the recorded samples, an improvement in
similarity rating is observed with an increase in the number of violins. However, a
consistently poorer naturalness impression and low similarity rating in comparison to
the samples of measured BRIRs highlight the deficiencies of BRIRs of GA-based room
acoustic simulations in the re-synthesis of complex acoustic sound fields.

160



9.1. Overall summary

In the secondmodule on directivity perception, two separate investigations ex-
plored the directivity-related attributes of individual instruments and the role of room
acoustics in a musically realistic performance context: the first study on the role of
directivity in source orientation perception, and the second study on the perception of
dynamically varying directivity, in in-situ acoustic environments. The study on orien-
tation perception explored the prediction accuracy of sound source orientation across
four cardinal facing angles (front, back, left, right) within the horizontal plane. This
was done by utilizing recordings of five musical instruments (trumpet, trombone, vi-
olin, flute, saxophone) with distinct directivity profiles in three performance spaces
characterized by contrasting acoustic features, under static binaural listening condi-
tions. Perceptual evaluation with expert listeners showed that, although individual
instruments achieved high prediction accuracies only for particular directions, no sig-
nificant differences were observed in their prediction accuracy values across all orien-
tations involved. However significant differences were observed in the prediction ac-
curacies of three room acoustic environments, suggesting room acoustics play a more
influential role in orientation perception than sound source directivity. Additionally,
the study explored the role of potential parameters, extracted from measured BRIRs
for each condition, in orientation perception within an ‘ecological’ performance con-
text. While certain parameters influence particular directions – Interaural Level Dif-
ference (ILD) and Interaural Cross Correlation (IACC) significantly affect lateral (left,
right) perception, and spectral centroid of direct sound and Direct-to-Reverberant Ra-
tio (DRR) provide cues for medial (front, back) orientation – a multifaceted nature of
these parameters was observed in orientation perception under in-situ conditions.

The second study on the perception of dynamic directivity in in-situ conditions was
tested by comparing the binaural recording of real instruments against those generated
by two electroacoustic sources (omnidirectional source and studio monitor). Along
with binaural recordings of the sound fields from five different instruments in different
orientations and room acoustic environments, the study utilized binaural recordings of
the replicated performances by playing back the close-mic recordings of specific instru-
ment orientation through the two electroacoustic sources. Perceptual comparison of
these samples by expert listeners indicated that while real instruments were generally
rated to be more natural, the electroacoustic sources showed comparable naturalness
ratings to particular instruments in particular acoustic conditions. Even with their dis-
tinct radiation characteristics and potential spectral coloration from spot-mic record-
ings, the electroacoustic sources were observed to improve their similarity to the real
instruments and each other, under specific acoustic conditions. Therefore, although
a rudimentary approximation of a real instrument by an electroacoustic counterpart
mostly does not achieve perceptual closeness to the real instrument, certain acoustic
conditions–characterized by room acoustic attributes and relative source orientation–
tend to obscure the large directivity differences between the sound sources. Addition-
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ally, this study explored and presented an objective method for modelling the percep-
tual similarity of binaural audio samples by applying Principle Component Analysis
(PCA) to MFCC features extracted from these samples, to analyze the perceived direc-
tivity differences.

Based on these insights, the perceptual importance of high spatial resolution of
directivity of individual instruments in the auralizations of ensemble performances
was analyzed by changing the number of sources from 1, 2, to 5. This was carried
out by employing two extreme cases for the room acoustic environment (echoic and
anechoic) as well as the instrument type (trumpet with ‘unidirectional’ characteristics,
and violin with ‘multi-directional’ characteristics). In a MUSHRA test comparing the
audio samples created with various degrees of ‘detailedness’ of the directivity of sound
sources, generated with scalable directional complexity by Spherical Harmonics trun-
cation of high-resolution reference data, it was noted that the samples with relatively
low-resolution directivity are perceptually close to those with high-resolution direc-
tivity reference. Although an optimal Spherical Harmonics order for a perceptually
plausible auralization requires further investigation, it is noted to be significantly con-
trolled by the directivity characteristics of the instrument utilized and also influenced
by the room acoustic characteristics. Interestingly, the relevance of directivity char-
acteristics remains valid even with an increasing number of sources, and it holds true
for the two kinds of instruments in both acoustic environments. This underscores the
necessity of employing a directivity having a perceptually optimal level of detailing,
for auralization of musical ensembles.

The third module focusing on the importance of acoustic environments in
ensemble sound analyzed the role of room acoustic attributes in shaping the blending
between instruments in a musically realistic performance setting. This was achieved
by employing a computational modeling approach to evaluate the perceived overall
blending between instruments by examining both the blending at the source level and
its alteration due to room acoustics. Audio stimuli of two violins with varying degrees
of source-level blending were auralized in diverse simulated room acoustic environ-
ments, and expert listeners assessed their overall blending. While room acoustic reflec-
tions typically enhance the blending impression, correlation analysis of room acous-
tic parameters revealed that their impact on overall blending depends on the source-
level blending of the stimuli used. Samples with poor source-level blending exhibited
more significant potential for enhancement of the overall blending by the acoustic
environment, whereas those with high source-level blending had limited room for im-
provement. This underscores the complex interplay between source-level blending
and room acoustics in shaping the overall blending and also highlights the necessity
to model overall blending as a function of both factors. Random Forest regression
model for predicting the overall perceived blending using source-level blending rat-
ings and room acoustic parameters was tested and validated through a comprehensive
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two-fold evaluation, including separate training and test datasets as well as Leave-one-
out-cross-validation, with amean absolute error of 6% in each case. Feature importance
analysis showed that while source-level blending contributes 60%, the room acoustics
contribute the rest 40% to the overall perceived blending ratings, with perceived rever-
berance being the primary contributor. This suggests that the room contribution to the
overall blending impression is nearly as significant as source-level blending between
the instruments in this controlled experimental setting.

By bringing together the observations and results from the individual investiga-
tions on different aspects of joint performances, musical blending, and directivity per-
ception, this thesis expects to provide insights into some of the key aspects of en-
semble sound formation. Investigations on different stages of the evolution of musi-
cal blending between instruments highlight the key factors involved in the evolution
of blending and also demonstrate the applicability of computational models to ana-
lyze and quantify complex psychoacoustic phenomena like musical blending. The at-
tempt to understand and assess the blending as a function of source-level blend and
room acoustic attributes for the first time through incorporating ‘ecologically’ realis-
tic samples makes this study unique in the field. Thus, the blending evaluations are
expected to offer insights into music performance, music perception-related research,
and perceptually oriented room acoustic designing. Investigations on directivity per-
ception of diverse instruments in in-situ performance spaces reveal the influence of
room acoustics, thereby providing insights into music recording, orchestral arrange-
ment, and communication acoustics. Studies on capturing individual source recordings
in joint performance and modeling their directivity in the simulation are expected to
advance the understanding for the auralization of a perceptually plausible and mu-
sically authentic ensemble or orchestra performance. Specifically, by providing cues
on perceptually plausible representations of individual instrument directivities in en-
semble performance, the study is expected to contribute to the advancement of virtual
orchestra simulations by optimizing the computational efforts on source modeling.

9.2 Future works

While the classification modeling of source-level blending from ‘ecological’ sound
recordings utilized MFCC features, the significance and contribution of musically ori-
ented, practically explainable acoustic parameters like pitch, spectral centroid, on-
set difference, loudness, and formant location on blending perception are subjected
to research. In an advanced version of the current classification model trained with
large and diverse datasets, introducing sound samples with controlled variation of
these acoustic parameters could help in estimating the significance of these param-
eters and also their transition point, i.e., the point at which a blended sample becomes
non-blended. Additionally, given that the directivity characteristics of instruments as
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well as their spatial positioning and orientation alter the energy distribution in the
room, these aspects could have a potential impact on the degree of blending, necessi-
tating further exploration. Utilizing a wide range of data sets having different num-
bers and combinations of instruments, a potential future goal would be to develop a
time-varying source-level blending prediction model using advanced machine learn-
ing tools for dynamic musical signals. This model can be integrated into the existing
approach that calculates the overall blend as a function of source-level blending rating
and room acoustic parameters, which can lead to a comprehensive assessment of the
overall blending as a time-varying parameter.

The results derived from the investigations involved in this study are mostly based
on static source and receiver conditions. Therefore, advanced studies should explore
the role of movement and rotation of the source and receiver during the performance,
as these factors are relevant in realistic conditions. Although being a widely used
method, considering the limitations of static headphone-based binaural reproduction
which is mostly utilized in this investigation, future studies could integrate other spa-
tial audio reproduction methods by utilizing measured/simulated Spatial Room Im-
pulse Responses (SRIRs) and loudspeaker arrays for 3D sound field rendering. This
would enable the ability for head rotation which could be relevant for the upcoming
advanced studies on directivity perception-related investigations such as source ori-
entation perception. Alternatively, future studies can advance further by employing a
real-time binaural rendering system with a head tracker, enabling both head rotation
and movement of listeners and musicians. This approach would have more practical
real-life applications compared to the spatial sound field creation in controlled labora-
tory conditions.

The formation and evolution of ensemble sound are complex and multifaceted.
Moreover, extensive evaluations are necessary for a detailed understanding of the dif-
ferent aspects involved in ensemble sound. While this thesis only addressed certain
aspects of ensemble sounds, several important areas remain underexplored, especially
the impact of room acoustic feedback on the musicians in an ensemble and the resul-
tant changes in the ensemble sound formation. While the variation in performance
strategies of individual musicians with changes in acoustic environments have been
analyzed, an extended investigation covering both objective and perceptual aspects is
necessary, particularly in the context of joint performances.
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Appendix A

Room acoustic parameters

Considering the room acoustic environment as a Linear Time-Invariant (LTI) system,
the transformation of the input signal (sound radiated from the sound source) to the
output (sound received by the listener) can be analyzed using Room Impulse Response
(RIR), which serves as the transfer function of the system. The RIR illustrates how
a room responds to a Dirac impulse generated from a source by showing its trans-
fer to the receiver as direct sound as well as series of impulses as room reflections
with decaying amplitude with time. Based on the perceptual aspects, the RIR can be
classified into three regions: the direct sound part (i.e., 0 - 5 milliseconds), the early
reflections (5 - 50 or 80 milliseconds), and late reverberation (80 milliseconds - end of
RIR). The direct sound from the instrument is crucial in sound source localization and
distance estimation. While the early reflections contribute to the perception of clar-
ity and source width impression, the late reverberation influences the perception of
spaciousness and envelopment. Numerous room acoustic parameters developed over
the last century addressing different objective and subjective features of room acous-
tic environments have been widely utilized in a standardized manner to characterize
acoustic environments. The major parameters discussed in the thesis, mostly defined
from the ISO 3382-1 [37] and IEC 60268-16-2020 [38] are described below.

Reverberation time: The reverberation time is defined to be the time required for
the sound energy to decay by 60 dB once the source stops radiating, and it is regarded as
the major parameter that characterizes the room acoustics by analysing the sensation
of ‘reverberance’. It is one of the first parameters that was proposed to characterize the
room acoustic attributes. The Reverberation time can be assessed using the Sabine’s
formula given below;

RT60(Sabine) = 0.161V∑n
i=1 Siαi + 4mV

(A.1)

where V is the volume, Si and αi represents the surface area with its corresponding
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absorption coefficient, m denotes the air absorption coefficient. It can also bemeasured
as the time for a 60 dB decay of sound from the integrated Schroeder curve[188] es-
timated from the RIR. In practical conditions, if it not possible to measure the 60 dB
decay due to the background noise, etc., the RT60 is analyzed using the parameters T30
or T20. These parameters estimate time required for the decay of sound from -5 to -35
dB (30 dB) or -5 to -25 dB (20 dB) respectively from the Schroeder curve, and linearly
extrapolate it to find the time required for 60 dB decay.

Early Decay Time (EDT): It is another decay parameter estimated by calculating
the decay of the Schroeder curve from 0 to -10 dB and extrapolating it to obtain the
time for 60 dB decay. Since it includes the initial decay part of the reverberation tail, it
is shown to better represent the subjective sensation of ‘reverberance’ than other RT
measures like T30 [39; 40].

Clarity (C80): It is is defined to be the ratio of early (0-80ms) to late (80-∞) arriving
energy in dB scale, and it is often referred to as an indicator of clarity of music.

C80 = 10 lg


∫ 0.080

0
p2(t) dt∫ ∞

0.080
p2(t) dt

 dB (A.2)

Definition (D50): It is a similar energy ratio measure as C80, that is defined to be
the ratio of early (0-50 ms in this case) to total energies expressed as linear fraction or
percentage which is better shown to represent clarity of speech.

D50 =

∫ 0.050

0
p2(t) dt∫ ∞

0
p2(t) dt

dB (A.3)

Speech Transmission Index (STI): Speech Transmission Index (STI), defined by
[44], demonstrates the intelligibility of speech in rooms. It is calculated by evaluating
the degradation of the modulation depth of an excitation signal, described as the Mod-
ulation Transfer Function, by the room acoustic reflections as it is transferred from the
source to receiver.

Strength parameter (G): It is the ratio between the sound energy of the RIR mea-
sured with an omnidirectional source inside the room and the energy of the same
source measured in a free field at a distance of 10 m. This parameter demonstrates the
ability of the acoustic environment to amplify sound energy from the source, and it is
often used to describe the subjective sensation of loudness [40].
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G = 10 lg


∫ ∞

0
p2(t) dt∫ ∞

0
p2

10(t) dt

 dB (A.4)

Studies demonstrate that analyzing the early and late arriving sound energy indi-
vidually can be a useful way to better comprehend the subjective and objective char-
acteristics of the acoustic environment [177; 175], although this method is not stan-
dardized in ISO. Therefore, in this thesis work, the strength parameter is estimated for
three conditions; Gearly (energy in the early part of RIR, i.e., in 0 - 80ms, including di-
rect sound and early reflections), G5-80 (energy of early reflections in 5 - 80ms excluding
direct sound), and Glate (energy of late reflections in 80ms -∞).

Early Lateral Energy Fraction (JLF): When it comes to spatial perception of
acoustic environments, apparent source width (ASW), and listener envelopment (LEV)
are the two different key concepts that contribute the most [178]. Apparent source
width is related to the energy of early reflections from lateral sides and it is assessed
using the parameters Early Lateral Energy Fraction (JLF) and Early Lateral Energy Frac-
tion Cosine (JLFC). JLF is defined to be the ratio of energy coming from the lateral direc-
tions measured using a figure-of-eight microphone (pL) for 5-80 ms (excluding direct
sound), and the energy received by an omnidirectional receiver at the same location.

JLF =

∫ 0.080

0.005
pL

2(t) dt∫ 0.080

0
p2(t) dt

(A.5)

Early Lateral Energy Fraction Cosine (JLFC): Since the figure-of-8 microphone
already has cosine directivity, the LF described above is observed to vary with the
square of the cosine of the angle of incident reflections. To compensate for this effect,
JLFC is proposed as the ratio between the energy as the dot product of a figure-of-eight
microphone to the omni receiver for 5 to 80 ms, and the energy of the omnidirectional
receiver for 0-80 ms (defined in [37]). The JLFC is therefore expected to better represent
the subjective sensation of perceived source width.

JLFC =

∫ 0.080

0.005
|pL(t).p(t)| dt∫ 0.080

0
p2(t) dt

(A.6)
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Late lateral energy level (Lj): Lj is typically used to better represent the listener’s
envelopment sensation by assessing the energy of the late part received from lateral
directions. It is defined as the logarithmic ratio between the late arriving (80-∞) en-
ergy from lateral directions measured with a figure-of-eight microphone, and the total
energy received in an omnidirectional receiver placed at a distance of 10 m in a free
field.

LJ = 10 lg


∫ ∞

0.080
pL

2(t) dt∫ ∞

0
p2

10(t) dt

 dB (A.7)

Bass Ratio (BR): It is defined as the ratio of reverberation times of low-frequency
bands to mid-frequency bands. Although it is not a standardized parameter, it has
been widely utilized in room acoustics perception research to quantify the balance of
reverberation between low-frquency and mid-frequency bands.

BR = T30,125Hz + T30,250Hz

T30,500Hz + T30,1000Hz

(A.8)

Treble Ratio (TR): Similar to Bass Ratio, the Treble Ratio indicates the balance
between the reverberation between high-frquency and mid-frequency bands. It is es-
timated as the ratio of reverberation times of low-frequency bands to mid-frequency
bands as given below.

BR = T30,2000Hz + T30,4000Hz

T30,500Hz + T30,1000Hz

(A.9)
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Musical score

Figure B.1: Music scores for individual instruments from [152]: the score covers the full
pitch range of instruments, essential for studying directivity perception of instruments
through exciting diverse directivity shapes.
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